V. K. Krishnapriya, A. Rajaneesh, K. S. Sajinkumar, Thomas Oommen, Ali P. Yunus, Nikhil Nedumpallile Vasu, R. B. Binoj Kumar, S. Adarsh
{"title":"A rapid run-out assessment methodology for the 2024 Wayanad debris flow","authors":"V. K. Krishnapriya, A. Rajaneesh, K. S. Sajinkumar, Thomas Oommen, Ali P. Yunus, Nikhil Nedumpallile Vasu, R. B. Binoj Kumar, S. Adarsh","doi":"10.1038/s44304-024-00044-5","DOIUrl":null,"url":null,"abstract":"The long run-out debris flows caused by oversaturated soil systems during the aggravated monsoon period in the Western Ghats raise questions about the hill community’s future. Here, we report the catastrophic long run-out Wayanad debris flow that occurred on 30th July 2024, which resulted in 231 fatalities and 128 people missing, and caused widespread destruction to infrastructure. This involved a maximum flow height of 10.66 m and maximum flow velocity of 18.7 m/s, simulated using RApid Mass Movement Simulation.","PeriodicalId":501712,"journal":{"name":"npj Natural Hazards","volume":" ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44304-024-00044-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Natural Hazards","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44304-024-00044-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The long run-out debris flows caused by oversaturated soil systems during the aggravated monsoon period in the Western Ghats raise questions about the hill community’s future. Here, we report the catastrophic long run-out Wayanad debris flow that occurred on 30th July 2024, which resulted in 231 fatalities and 128 people missing, and caused widespread destruction to infrastructure. This involved a maximum flow height of 10.66 m and maximum flow velocity of 18.7 m/s, simulated using RApid Mass Movement Simulation.