{"title":"A Layer-by-Layer Polycaprolactone/Chitosan-Based Biomimetic Hybrid Nanofibroporous Scaffold for Enhanced Skin Tissue Regeneration: Integrating Solution Blow Spinning and Freeze Casting Techniques.","authors":"Divakar Singh, Darshna, Pradeep Srivastava","doi":"10.1021/acsabm.4c01021","DOIUrl":null,"url":null,"abstract":"<p><p>Nanofibers, with their high surface area-to-volume ratio, elasticity, and mechanical strength, significantly enhance scaffold structures for skin tissue engineering. The present study introduces a unique method of combining solution blow spinning (SBS) and freeze casting to fabricate biomimetic hybrid nanofibroporous scaffolds (BHNS) using polycaprolactone (PCL) and chitosan (CH). The developed scaffolds mimic the fibrous porous natural extracellular matrix (ECM) architecture, promoting cell adhesion, proliferation, and matrix deposition. The combined SBS and freeze-casting processes resulted in scaffolds with high porosity and optimal mechanical strength, crucial for effective skin regeneration. Scanning electron microscopy (SEM) confirmed the uniform, nonwoven, and beadless architecture of the PCL fibers and the fibroporous nature of the PCL/CH scaffolds. The scaffolds exhibited excellent swelling behavior, controlled degradation rates, and enhanced mechanical properties. <i>In vitro</i> cell studies demonstrated scaffold cell-supportive properties in terms of cell attachment, proliferation, and migration. This innovative layer-by-layer fabrication technique, integrating nanofibers with freeze-cast scaffolds, represents a significant advancement in skin tissue engineering, promising improved outcomes in wound healing and regenerative medicine.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Nanofibers, with their high surface area-to-volume ratio, elasticity, and mechanical strength, significantly enhance scaffold structures for skin tissue engineering. The present study introduces a unique method of combining solution blow spinning (SBS) and freeze casting to fabricate biomimetic hybrid nanofibroporous scaffolds (BHNS) using polycaprolactone (PCL) and chitosan (CH). The developed scaffolds mimic the fibrous porous natural extracellular matrix (ECM) architecture, promoting cell adhesion, proliferation, and matrix deposition. The combined SBS and freeze-casting processes resulted in scaffolds with high porosity and optimal mechanical strength, crucial for effective skin regeneration. Scanning electron microscopy (SEM) confirmed the uniform, nonwoven, and beadless architecture of the PCL fibers and the fibroporous nature of the PCL/CH scaffolds. The scaffolds exhibited excellent swelling behavior, controlled degradation rates, and enhanced mechanical properties. In vitro cell studies demonstrated scaffold cell-supportive properties in terms of cell attachment, proliferation, and migration. This innovative layer-by-layer fabrication technique, integrating nanofibers with freeze-cast scaffolds, represents a significant advancement in skin tissue engineering, promising improved outcomes in wound healing and regenerative medicine.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.