Lingyu Zhang, Yue-Yang Liu, Yang Zong, Zhuo Lei, Shang-Bo Yu, Wei Zhou, Hui Wang, Dan-Wei Zhang, Zhan-Ting Li
{"title":"Supramolecular Organic Framework that Enables Multifunctional Doxorubicin Delivery, Photofrin Post-treatment Phototoxicity Inhibition, and Heparin Neutralization.","authors":"Lingyu Zhang, Yue-Yang Liu, Yang Zong, Zhuo Lei, Shang-Bo Yu, Wei Zhou, Hui Wang, Dan-Wei Zhang, Zhan-Ting Li","doi":"10.1021/acsabm.4c01640","DOIUrl":null,"url":null,"abstract":"<p><p>Although porous frameworks are structurally ideal for the development of biomaterials through drug adsorption, sequestration, and delivery, integration of multiple biofunctions into a biocompatible porous framework would greatly improve its potential for preclinical investigations by increasing both therapeutic value and research and development efficiency. Herein, we report the preparation of a highly biocompatible supramolecular organic framework from an imidazolium-derived tetrahedral monomer and cucurbit[8]uril. The supramolecular organic framework has been revealed to have regular intrinsic porosity and adsorb doxorubicin, photofrin, and heparins driven by hydrophobicity and/or ion-pairing electrostatic interactions. In vivo or in vitro assays illustrate that this adsorption leads to efficient intracellular delivery of doxorubicin, which enhances its antitumor efficacy, elimination of photofrin, which inhibits its post-treatment phototoxicity without reducing its photodynamic therapeutic activity, and sequestration of (low-molecular-weight) heparins, which neutralizes their anticoagulation activity more efficiently than clinically used protamine.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Although porous frameworks are structurally ideal for the development of biomaterials through drug adsorption, sequestration, and delivery, integration of multiple biofunctions into a biocompatible porous framework would greatly improve its potential for preclinical investigations by increasing both therapeutic value and research and development efficiency. Herein, we report the preparation of a highly biocompatible supramolecular organic framework from an imidazolium-derived tetrahedral monomer and cucurbit[8]uril. The supramolecular organic framework has been revealed to have regular intrinsic porosity and adsorb doxorubicin, photofrin, and heparins driven by hydrophobicity and/or ion-pairing electrostatic interactions. In vivo or in vitro assays illustrate that this adsorption leads to efficient intracellular delivery of doxorubicin, which enhances its antitumor efficacy, elimination of photofrin, which inhibits its post-treatment phototoxicity without reducing its photodynamic therapeutic activity, and sequestration of (low-molecular-weight) heparins, which neutralizes their anticoagulation activity more efficiently than clinically used protamine.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.