Cell elasticity measurement and sorting based on microfluidic techniques: Advances and applications.

IF 10.7 1区 生物学 Q1 BIOPHYSICS Biosensors and Bioelectronics Pub Date : 2025-03-01 Epub Date: 2024-11-25 DOI:10.1016/j.bios.2024.116985
Jiahuan Yang, Yong Liu, Bin Li, Jingjing Li, Sheng Yan, Huaying Chen
{"title":"Cell elasticity measurement and sorting based on microfluidic techniques: Advances and applications.","authors":"Jiahuan Yang, Yong Liu, Bin Li, Jingjing Li, Sheng Yan, Huaying Chen","doi":"10.1016/j.bios.2024.116985","DOIUrl":null,"url":null,"abstract":"<p><p>Cell elasticity serves as a crucial physical biomarker that reflects changes in cellular structures and physiological states, providing key insights into cell behaviors. It links mechanical properties to biological function, highlighting its importance for understanding cell health and advancing biomedical research. Microfluidic technologies, with their capabilities for precise manipulation and high-throughput analysis, have significantly advanced the measurement of cell elasticity and elasticity-based cell sorting. This paper presents a comprehensive overview of advanced microsystems for assessing cell elasticity, discussing their advantages and limitations. The biomedical applications of elasticity-based sorting are highlighted, including cell classification, clinical diagnosis, drug screening, and stem cell differentiation prediction. The paper addresses the current challenges in the field, such as limited measurement efficiency and scalability, and explores future research directions, including the development of automated, high-throughput systems and the integration of elasticity measurements into practical biomedical applications. These advancements aim to deepen our understanding of cellular mechanics, improve diagnostic precision, and foster the development of novel therapeutic strategies. Ultimately, this work emphasizes the potential of cell elasticity as a key parameter in advancing disease diagnosis and therapeutic research.</p>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"271 ","pages":"116985"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.bios.2024.116985","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Cell elasticity serves as a crucial physical biomarker that reflects changes in cellular structures and physiological states, providing key insights into cell behaviors. It links mechanical properties to biological function, highlighting its importance for understanding cell health and advancing biomedical research. Microfluidic technologies, with their capabilities for precise manipulation and high-throughput analysis, have significantly advanced the measurement of cell elasticity and elasticity-based cell sorting. This paper presents a comprehensive overview of advanced microsystems for assessing cell elasticity, discussing their advantages and limitations. The biomedical applications of elasticity-based sorting are highlighted, including cell classification, clinical diagnosis, drug screening, and stem cell differentiation prediction. The paper addresses the current challenges in the field, such as limited measurement efficiency and scalability, and explores future research directions, including the development of automated, high-throughput systems and the integration of elasticity measurements into practical biomedical applications. These advancements aim to deepen our understanding of cellular mechanics, improve diagnostic precision, and foster the development of novel therapeutic strategies. Ultimately, this work emphasizes the potential of cell elasticity as a key parameter in advancing disease diagnosis and therapeutic research.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biosensors and Bioelectronics
Biosensors and Bioelectronics 工程技术-电化学
CiteScore
20.80
自引率
7.10%
发文量
1006
审稿时长
29 days
期刊介绍: Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.
期刊最新文献
Fast and accurate multi-bacterial identification using cleavable and FRET-based peptide nucleic acid probes. Applications of DNA functionalized gold nanozymes in biosensing. Compact multiplex PCR device for HIV-1 and HIV-2 viral load determination from finger-prick whole blood in resource-limited settings. Direct electronical readout of surface plasmon resonance biosensor enabled by on-fiber Graphene/PMMA photodetector. Molecular design strategy for microorganism discrimination based on keto-salicylaldehyde azine derivatives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1