Current Status of Research on Nanomaterials Combined with Mesenchymal Stem Cells for the Treatment of Ischemic Stroke.

IF 3.3 4区 医学 Q2 NEUROSCIENCES NeuroMolecular Medicine Pub Date : 2024-12-07 DOI:10.1007/s12017-024-08819-9
Qingxue Xu, Lijuan Gu, Zhiyang Li, Lun Gao, Lu Wei, Zohaib Shafiq, Shigui Chen, Qiang Cai
{"title":"Current Status of Research on Nanomaterials Combined with Mesenchymal Stem Cells for the Treatment of Ischemic Stroke.","authors":"Qingxue Xu, Lijuan Gu, Zhiyang Li, Lun Gao, Lu Wei, Zohaib Shafiq, Shigui Chen, Qiang Cai","doi":"10.1007/s12017-024-08819-9","DOIUrl":null,"url":null,"abstract":"<p><p>Ischemic stroke (IS) is a disease with high mortality and disability rates worldwide and is a serious threat to patient health. Owing to the narrow therapeutic window, effective treatments during the recovery period are limited. However, in recent years, mesenchymal stem cells (MSCs) have attracted attention and have shown therapeutic potential in IS treatment because of their abilities to home and secrete multiple bioactive substances and potential for differentiation and substitution. The therapeutic mechanisms of MSCs in IS include the regulatory effects of MSCs on microglia, the dual role of MSCs in astrocytes, how MSCs connect innate and adaptive immunity, the secretion of cytokines by MSCs to counteract apoptosis and MSC apoptosis, the promotion of angiogenesis by MSCs to favor the restoration of the blood‒brain barrier (BBB), and the potential function of local neural replacement by MSCs. However, the low graft survival rate, insufficient homing, poor targeting, and inability to achieve directional differentiation of MSCs limit their wide application. As an approach to compensate for the shortcomings of MSCs, scientists have used nanomaterials to assist MSCs in homing, survival and proliferation. In addition, the unique material of nanomaterials adds tracking, imaging and real-time monitoring to stroke treatment. The identification of effective treatments for stroke is urgently needed; thus, an understanding of how MSCs treat stroke and further improvements in the use of nanomaterials are necessary.</p>","PeriodicalId":19304,"journal":{"name":"NeuroMolecular Medicine","volume":"26 1","pages":"51"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroMolecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12017-024-08819-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Ischemic stroke (IS) is a disease with high mortality and disability rates worldwide and is a serious threat to patient health. Owing to the narrow therapeutic window, effective treatments during the recovery period are limited. However, in recent years, mesenchymal stem cells (MSCs) have attracted attention and have shown therapeutic potential in IS treatment because of their abilities to home and secrete multiple bioactive substances and potential for differentiation and substitution. The therapeutic mechanisms of MSCs in IS include the regulatory effects of MSCs on microglia, the dual role of MSCs in astrocytes, how MSCs connect innate and adaptive immunity, the secretion of cytokines by MSCs to counteract apoptosis and MSC apoptosis, the promotion of angiogenesis by MSCs to favor the restoration of the blood‒brain barrier (BBB), and the potential function of local neural replacement by MSCs. However, the low graft survival rate, insufficient homing, poor targeting, and inability to achieve directional differentiation of MSCs limit their wide application. As an approach to compensate for the shortcomings of MSCs, scientists have used nanomaterials to assist MSCs in homing, survival and proliferation. In addition, the unique material of nanomaterials adds tracking, imaging and real-time monitoring to stroke treatment. The identification of effective treatments for stroke is urgently needed; thus, an understanding of how MSCs treat stroke and further improvements in the use of nanomaterials are necessary.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米材料联合间充质干细胞治疗缺血性脑卒中的研究现状
缺血性脑卒中是世界范围内死亡率和致残率较高的疾病,严重威胁着患者的健康。由于治疗窗口较窄,恢复期的有效治疗十分有限。然而,近年来,间充质干细胞(MSCs)因其能够产生和分泌多种生物活性物质以及具有分化和替代的潜力而引起了人们的关注,并在IS治疗中显示出治疗潜力。MSCs治疗IS的机制包括MSCs对小胶质细胞的调节作用,MSCs在星形胶质细胞中的双重作用,MSCs如何连接先天免疫和适应性免疫,MSCs分泌细胞因子来对抗细胞凋亡和MSC凋亡,MSCs促进血管生成以促进血脑屏障(BBB)的恢复,以及MSCs局部神经替代的潜在功能。然而,移植成活率低、归巢不足、靶向性差、无法实现MSCs的定向分化,限制了MSCs的广泛应用。作为一种弥补间充质干细胞缺陷的方法,科学家们已经使用纳米材料来辅助间充质干细胞的归巢、存活和增殖。此外,纳米材料的独特材料为中风治疗增加了跟踪、成像和实时监测。迫切需要确定卒中的有效治疗方法;因此,了解间充质干细胞如何治疗中风和进一步改进纳米材料的使用是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
NeuroMolecular Medicine
NeuroMolecular Medicine 医学-神经科学
CiteScore
7.10
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: NeuroMolecular Medicine publishes cutting-edge original research articles and critical reviews on the molecular and biochemical basis of neurological disorders. Studies range from genetic analyses of human populations to animal and cell culture models of neurological disorders. Emerging findings concerning the identification of genetic aberrancies and their pathogenic mechanisms at the molecular and cellular levels will be included. Also covered are experimental analyses of molecular cascades involved in the development and adult plasticity of the nervous system, in neurological dysfunction, and in neuronal degeneration and repair. NeuroMolecular Medicine encompasses basic research in the fields of molecular genetics, signal transduction, plasticity, and cell death. The information published in NEMM will provide a window into the future of molecular medicine for the nervous system.
期刊最新文献
The Peripheral Amyloid-β Nexus: Connecting Alzheimer's Disease with Atherosclerosis through Shared Pathophysiological Mechanisms. Leptin and Leptin Signaling in Multiple Sclerosis: A Narrative Review. NOTCH3 Variant Position Affects the Phenotype at the Pluripotent Stem Cell Level in CADASIL. ADAR1 Promotes NUPR1 A-to-I RNA Editing to Exacerbate Ischemic Brain Injury by Microglia Mediated Neuroinflammation. Annexin A's Life in Pan-Cancer: Especially in Glioma Immune Cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1