Sudha Yadav, Robert S Lyons, Zoe Readi-Brown, Maxime A Siegler, David P Goldberg
{"title":"Influence of the second coordination sphere on O<sub>2</sub> activation by a nonheme iron(II) thiolate complex.","authors":"Sudha Yadav, Robert S Lyons, Zoe Readi-Brown, Maxime A Siegler, David P Goldberg","doi":"10.1016/j.jinorgbio.2024.112776","DOIUrl":null,"url":null,"abstract":"<p><p>The synthesis and characterization of a new ligand, 1-(bis(pyridin-2-ylmethyl) amino)-2-methylpropane-2-thiolate (BPA<sup>Me2</sup>S<sup>-</sup>) and its nonheme iron complex, Fe<sup>II</sup>(BPA<sup>Me2</sup>S)Br (1), is reported. Reaction of 1 with O<sub>2</sub> at -20 °C generates a high-spin iron(III)-hydroxide complex, [Fe<sup>III</sup>(OH)(BPA<sup>Me2</sup>S)(Br)] (2), that was characterized by UV-vis, <sup>57</sup>Fe Mössbauer, and electron paramagnetic resonance (EPR) spectroscopies, and electrospray ionization mass spectrometry (ESI-MS). Density functional theory (DFT) calculations were employed to support the spectroscopic assignments. In a previous report (J. Am. Chem. Soc.2024, 146, 7915-7921), the related iron(II) complex, Fe<sup>II</sup>(BNPA<sup>Me2</sup>S)Br (BNPA<sup>Me2</sup>S<sup>-</sup> = (bis((6-(neopentylamino)pyridinyl) methyl)amino)-2-methylpropane-2-thiolate) was reported and shown to react with O<sub>2</sub> at low temperature to give a rare iron(III)-superoxide intermediate, which then converts to an S‑oxygenated sulfinate as seen for the nonheme iron thiol dioxygenases. This complex includes two hydrogen bonding neopentylamino groups in the second coordination sphere. Complex 1 does not include these H-bonding groups, and its reactivity with O<sub>2</sub> does not yield a stabilized Fe/O<sub>2</sub> intermediate or S‑oxygenated products, although the data suggest an inner-sphere mechanism and formation of an iron‑oxygen species that is capable of abstracting hydrogen atoms from solvent or weak CH bond substrates. This study indicates that the H-bond donors are critical for stabilizing the Fe<sup>III</sup>(O<sub>2</sub><sup>-•</sup>) intermediate with the BNPA<sup>Me2</sup>S<sup>-</sup> ligand, which in turn leads to S‑oxygenation, as opposed to H-atom abstraction, following O<sub>2</sub> activation by the nonheme iron center<sub>.</sub></p>","PeriodicalId":364,"journal":{"name":"Journal of Inorganic Biochemistry","volume":"264 ","pages":"112776"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jinorgbio.2024.112776","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The synthesis and characterization of a new ligand, 1-(bis(pyridin-2-ylmethyl) amino)-2-methylpropane-2-thiolate (BPAMe2S-) and its nonheme iron complex, FeII(BPAMe2S)Br (1), is reported. Reaction of 1 with O2 at -20 °C generates a high-spin iron(III)-hydroxide complex, [FeIII(OH)(BPAMe2S)(Br)] (2), that was characterized by UV-vis, 57Fe Mössbauer, and electron paramagnetic resonance (EPR) spectroscopies, and electrospray ionization mass spectrometry (ESI-MS). Density functional theory (DFT) calculations were employed to support the spectroscopic assignments. In a previous report (J. Am. Chem. Soc.2024, 146, 7915-7921), the related iron(II) complex, FeII(BNPAMe2S)Br (BNPAMe2S- = (bis((6-(neopentylamino)pyridinyl) methyl)amino)-2-methylpropane-2-thiolate) was reported and shown to react with O2 at low temperature to give a rare iron(III)-superoxide intermediate, which then converts to an S‑oxygenated sulfinate as seen for the nonheme iron thiol dioxygenases. This complex includes two hydrogen bonding neopentylamino groups in the second coordination sphere. Complex 1 does not include these H-bonding groups, and its reactivity with O2 does not yield a stabilized Fe/O2 intermediate or S‑oxygenated products, although the data suggest an inner-sphere mechanism and formation of an iron‑oxygen species that is capable of abstracting hydrogen atoms from solvent or weak CH bond substrates. This study indicates that the H-bond donors are critical for stabilizing the FeIII(O2-•) intermediate with the BNPAMe2S- ligand, which in turn leads to S‑oxygenation, as opposed to H-atom abstraction, following O2 activation by the nonheme iron center.
期刊介绍:
The Journal of Inorganic Biochemistry is an established international forum for research in all aspects of Biological Inorganic Chemistry. Original papers of a high scientific level are published in the form of Articles (full length papers), Short Communications, Focused Reviews and Bioinorganic Methods. Topics include: the chemistry, structure and function of metalloenzymes; the interaction of inorganic ions and molecules with proteins and nucleic acids; the synthesis and properties of coordination complexes of biological interest including both structural and functional model systems; the function of metal- containing systems in the regulation of gene expression; the role of metals in medicine; the application of spectroscopic methods to determine the structure of metallobiomolecules; the preparation and characterization of metal-based biomaterials; and related systems. The emphasis of the Journal is on the structure and mechanism of action of metallobiomolecules.