Roughhousing with Ions: Surface-Induced Dissociation and Electron Capture Dissociation as Diagnostics of Q-Cyclic IMS-TOF Instrument Tuning Gentleness.

IF 3.1 2区 化学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of the American Society for Mass Spectrometry Pub Date : 2025-01-01 Epub Date: 2024-12-07 DOI:10.1021/jasms.4c00417
Andrew J Arslanian, Vicki H Wysocki
{"title":"Roughhousing with Ions: Surface-Induced Dissociation and Electron Capture Dissociation as Diagnostics of Q-Cyclic IMS-TOF Instrument Tuning Gentleness.","authors":"Andrew J Arslanian, Vicki H Wysocki","doi":"10.1021/jasms.4c00417","DOIUrl":null,"url":null,"abstract":"<p><p>Native mass spectrometry can characterize a range of biomolecular features pertinent to structural biology, including intact mass, stoichiometry, ligand-bound states, and topology. However, when an instrument's ionization source is tuned to maximize signal intensity or adduct removal, it is possible that the biomolecular complex's tertiary and quaternary structures can be rearranged in a way that no longer reflect its native-like conformation. This could affect downstream ion activation experiments, leading to erroneous conclusions about the native-like structure. One activation strategy is surface-induced dissociation (SID), which generally causes native-like protein complexes to dissociate along the weakest subunit interfaces, revealing critical information about the complex's native-like topology and subunit connectivity. If the quaternary structure has been disturbed, then the SID fingerprint will shift as well. Thus, SID was used to diagnose source-induced quaternary structure rearrangement and help tune an instrument's source and other upstream transmission regions to strike the balance between signal intensity, adduct removal, and conserving the native-like structure. Complementary to SID, electron-capture dissociation (ECD) can also diagnose rearranged quaternary structures and was used after in-source activation to confirm that the subunit interfaces were rearranged, opening the structure to electron capture and subsequent dissociation. These results provide a valuable guide for new practitioners of native mass spectrometry and highlight the importance of using standard protein complexes when tuning new instrument platforms for optimal native mass spectrometry performance.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":"187-200"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jasms.4c00417","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Native mass spectrometry can characterize a range of biomolecular features pertinent to structural biology, including intact mass, stoichiometry, ligand-bound states, and topology. However, when an instrument's ionization source is tuned to maximize signal intensity or adduct removal, it is possible that the biomolecular complex's tertiary and quaternary structures can be rearranged in a way that no longer reflect its native-like conformation. This could affect downstream ion activation experiments, leading to erroneous conclusions about the native-like structure. One activation strategy is surface-induced dissociation (SID), which generally causes native-like protein complexes to dissociate along the weakest subunit interfaces, revealing critical information about the complex's native-like topology and subunit connectivity. If the quaternary structure has been disturbed, then the SID fingerprint will shift as well. Thus, SID was used to diagnose source-induced quaternary structure rearrangement and help tune an instrument's source and other upstream transmission regions to strike the balance between signal intensity, adduct removal, and conserving the native-like structure. Complementary to SID, electron-capture dissociation (ECD) can also diagnose rearranged quaternary structures and was used after in-source activation to confirm that the subunit interfaces were rearranged, opening the structure to electron capture and subsequent dissociation. These results provide a valuable guide for new practitioners of native mass spectrometry and highlight the importance of using standard protein complexes when tuning new instrument platforms for optimal native mass spectrometry performance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
离子粗加工:表面诱导解离和电子捕获解离作为q -循环IMS-TOF仪器调谐温和的诊断。
原生质谱法可以表征一系列与结构生物学相关的生物分子特征,包括完整质量、化学计量、配体结合态和拓扑结构。然而,当仪器的电离源调整到最大信号强度或去除加合物时,生物分子复合物的三级和四级结构可能会以一种不再反映其天然构象的方式重新排列。这可能会影响下游离子活化实验,导致对天然结构的错误结论。一种激活策略是表面诱导解离(SID),它通常会导致天然样蛋白复合物沿着最弱的亚基界面解离,从而揭示有关复合物的天然样拓扑结构和亚基连通性的关键信息。如果四元结构受到干扰,那么SID指纹也会发生变化。因此,SID用于诊断源引起的第四系结构重排,并帮助调整仪器的源和其他上游传输区域,以在信号强度、加合物去除和保存原生结构之间取得平衡。作为SID的补充,电子捕获解离(ECD)也可以诊断重排的季元结构,并在源内激活后用于确认亚基界面被重排,打开结构以进行电子捕获和随后的解离。这些结果为天然质谱的新从业者提供了有价值的指导,并强调了在调整新仪器平台以获得最佳天然质谱性能时使用标准蛋白质复合物的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
257
审稿时长
1 months
期刊介绍: The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role. Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives
期刊最新文献
Faces of Mass Spectrometry/Ljiljana Paša-Tolić. Characterization of Sugammadex-Related Isomeric Cyclodextrin Impurities Using Cyclic Ion Mobility High-Resolution Mass Spectrometry. Locating Polyubiquitin Receptors on the 19S Regulatory Proteasome of S. cerevisiae by Cross-Linking Mass Spectrometry. Rigorous Analysis of Multimodal HDX-MS Spectra. A Hybrid Vacuum Flange RF Oscillator for Low-Cost Mass Spectrometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1