Neuropeptide-mediated activation of astrocytes improves stress resilience in mice by modulating cortical neural synapses.

IF 6.9 1区 医学 Q1 CHEMISTRY, MULTIDISCIPLINARY Acta Pharmacologica Sinica Pub Date : 2024-12-06 DOI:10.1038/s41401-024-01420-7
Jing Cui, Xiao-Ran Wang, Jie Yu, Bo-Rui Zhang, Ya-Fei Shi, Kwok-Fai So, Li Zhang, Ji-An Wei
{"title":"Neuropeptide-mediated activation of astrocytes improves stress resilience in mice by modulating cortical neural synapses.","authors":"Jing Cui, Xiao-Ran Wang, Jie Yu, Bo-Rui Zhang, Ya-Fei Shi, Kwok-Fai So, Li Zhang, Ji-An Wei","doi":"10.1038/s41401-024-01420-7","DOIUrl":null,"url":null,"abstract":"<p><p>Astrocytes are known to modulate synaptogenesis or neuronal activities, thus participating in mental functions. It has been shown that astrocytes are involved in the antidepressant mechanism. In this study we investigated the potential hormonal mediator governing the astrocyte-neuron interplay for stress-coping behaviors. Mice were subjected to chronic restraint stress (CRS) for 14 days, and then brain tissue was harvested for analyses. We found that the expression of pituitary adenylate cyclase activating polypeptide (PACAP) and its receptor PAC1 was significantly decreased in astrocytes of the prelimbic (PrL) cortex. By conducting a combination of genetics, in vivo imaging and behavioral assays we demonstrated that PAC1 in cortical astrocytes was necessary for maintaining normal resilience of mice against chronic environmental stress like restraint stress. Furthermore, we showed the enhancement of de novo cortical spine formation and synaptic activity under PACAP-mediated astrocytic activation possibly via the ATP release. The molecular mechanisms suggested that the vesicle homeostasis mediated by PACAP-PAC1 axis in astrocytes was involved in regulating synaptic functions. This study identifies a previously unrecognized route by which neuropeptide modulates cortical functions via local regulation of astrocytes.</p>","PeriodicalId":6942,"journal":{"name":"Acta Pharmacologica Sinica","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmacologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41401-024-01420-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Astrocytes are known to modulate synaptogenesis or neuronal activities, thus participating in mental functions. It has been shown that astrocytes are involved in the antidepressant mechanism. In this study we investigated the potential hormonal mediator governing the astrocyte-neuron interplay for stress-coping behaviors. Mice were subjected to chronic restraint stress (CRS) for 14 days, and then brain tissue was harvested for analyses. We found that the expression of pituitary adenylate cyclase activating polypeptide (PACAP) and its receptor PAC1 was significantly decreased in astrocytes of the prelimbic (PrL) cortex. By conducting a combination of genetics, in vivo imaging and behavioral assays we demonstrated that PAC1 in cortical astrocytes was necessary for maintaining normal resilience of mice against chronic environmental stress like restraint stress. Furthermore, we showed the enhancement of de novo cortical spine formation and synaptic activity under PACAP-mediated astrocytic activation possibly via the ATP release. The molecular mechanisms suggested that the vesicle homeostasis mediated by PACAP-PAC1 axis in astrocytes was involved in regulating synaptic functions. This study identifies a previously unrecognized route by which neuropeptide modulates cortical functions via local regulation of astrocytes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经肽介导的星形胶质细胞激活通过调节皮质神经突触改善小鼠的应激恢复能力。
星形胶质细胞调节突触发生或神经元活动,从而参与心理功能。研究表明星形胶质细胞参与抗抑郁机制。在这项研究中,我们探讨了潜在的激素调节星形细胞-神经元相互作用的压力应对行为。小鼠进行慢性约束应激(CRS) 14天,然后采集脑组织进行分析。我们发现垂体腺苷酸环化酶激活多肽(PACAP)及其受体PAC1在前边缘(PrL)皮质星形胶质细胞中的表达显著降低。通过遗传学、体内成像和行为分析的结合,我们证明了皮层星形胶质细胞中的PAC1对于维持小鼠对慢性环境应激(如约束应激)的正常恢复能力是必要的。此外,我们发现在pacap介导的星形细胞激活下,新生皮质棘形成和突触活性增强可能是通过ATP释放。其分子机制提示星形胶质细胞内PACAP-PAC1轴介导的囊泡稳态参与突触功能的调节。本研究确定了一种以前未被认识的途径,即神经肽通过星形胶质细胞的局部调节来调节皮层功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Pharmacologica Sinica
Acta Pharmacologica Sinica 医学-化学综合
CiteScore
15.10
自引率
2.40%
发文量
4365
审稿时长
2 months
期刊介绍: APS (Acta Pharmacologica Sinica) welcomes submissions from diverse areas of pharmacology and the life sciences. While we encourage contributions across a broad spectrum, topics of particular interest include, but are not limited to: anticancer pharmacology, cardiovascular and pulmonary pharmacology, clinical pharmacology, drug discovery, gastrointestinal and hepatic pharmacology, genitourinary, renal, and endocrine pharmacology, immunopharmacology and inflammation, molecular and cellular pharmacology, neuropharmacology, pharmaceutics, and pharmacokinetics. Join us in sharing your research and insights in pharmacology and the life sciences.
期刊最新文献
Cannabinoid-2 receptor depletion promotes non-alcoholic fatty liver disease in mice via disturbing gut microbiota and tryptophan metabolism. CXCR2 modulates chronic pain comorbid depression in mice by regulating adult neurogenesis in the ventral dentate gyrus. Circular RNA hsa_circ_0000288 protects against epilepsy in mice by binding to and stabilizing caprin1 protein. Krüppel-like factor 9 alleviates Alzheimer's disease via IDE-mediated Aβ degradation. Co-inhibition of RAGE and TLR4 sensitizes pancreatic cancer to irreversible electroporation in mice by disrupting autophagy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1