Krüppel-like factor 9 alleviates Alzheimer's disease via IDE-mediated Aβ degradation.

IF 6.9 1区 医学 Q1 CHEMISTRY, MULTIDISCIPLINARY Acta Pharmacologica Sinica Pub Date : 2025-02-17 DOI:10.1038/s41401-025-01491-0
Yue-Yao Feng, Jing-Ran Hao, Yu-Jie Zhang, Tong-Tong Qiu, Meng-Lin Zhang, Wei Qiao, Jin-Jin Wu, Ping Qiu, Chao-Fan Xu, Yin-Liang Zhang, Chun-Yuan Du, Zhe Pan, Yong-Sheng Chang
{"title":"Krüppel-like factor 9 alleviates Alzheimer's disease via IDE-mediated Aβ degradation.","authors":"Yue-Yao Feng, Jing-Ran Hao, Yu-Jie Zhang, Tong-Tong Qiu, Meng-Lin Zhang, Wei Qiao, Jin-Jin Wu, Ping Qiu, Chao-Fan Xu, Yin-Liang Zhang, Chun-Yuan Du, Zhe Pan, Yong-Sheng Chang","doi":"10.1038/s41401-025-01491-0","DOIUrl":null,"url":null,"abstract":"<p><p>The deposition of β-amyloid (Aβ) in the brain is a crucial factor in the pathogenesis of Alzheimer's disease (AD). Insulin-degrading enzyme (IDE) plays a critical role in the balance between Aβ production and degradation. However, the regulatory mechanisms of IDE are not yet fully understood. Therefore, uncovering additional IDE regulatory mechanisms will help elucidate the pathogenesis of AD and identify key therapeutic targets for this disease. This study revealed that global Krüppel-like factor 9-mutant (Klf9<sup>-/-</sup>) mice exhibited impaired cognitive function. Additionally, we found that Klf9 expression in hippocampal tissue was reduced in APPswe/PS1dE9 (APP/PS1) mice. This study also showed that Klf9 stimulates IDE expression and promotes the Aβ degradation process by directly binding to IDE and activating its transcription. Silencing IDE blocked the Klf9-induced Aβ degradation process. We stereotactically injected an adeno-associated virus to selectively overexpress IDE (AAV-IDE) in the hippocampal neurons of Klf9<sup>-/-</sup> mice and found that the overexpression of IDE in hippocampal neurons ameliorated cognitive deficits and reduced the Aβ content in Klf9<sup>-/-</sup> mice. Additionally, we also stereotactically injected AAV-Klf9 into the hippocampal neurons of APP/PS1 mice and found that overexpression of Klf9 in hippocampal neurons ameliorated cognitive deficits and reduced Aβ levels in APP/PS1 mice. These findings suggest that downregulation of Klf9 may be a key factor in AD progression, as it reduces Aβ clearance by decreasing IDE expression. Overexpression or activation of Klf9 may be a potential strategy for preventing the pathogenesis of AD.</p>","PeriodicalId":6942,"journal":{"name":"Acta Pharmacologica Sinica","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmacologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41401-025-01491-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The deposition of β-amyloid (Aβ) in the brain is a crucial factor in the pathogenesis of Alzheimer's disease (AD). Insulin-degrading enzyme (IDE) plays a critical role in the balance between Aβ production and degradation. However, the regulatory mechanisms of IDE are not yet fully understood. Therefore, uncovering additional IDE regulatory mechanisms will help elucidate the pathogenesis of AD and identify key therapeutic targets for this disease. This study revealed that global Krüppel-like factor 9-mutant (Klf9-/-) mice exhibited impaired cognitive function. Additionally, we found that Klf9 expression in hippocampal tissue was reduced in APPswe/PS1dE9 (APP/PS1) mice. This study also showed that Klf9 stimulates IDE expression and promotes the Aβ degradation process by directly binding to IDE and activating its transcription. Silencing IDE blocked the Klf9-induced Aβ degradation process. We stereotactically injected an adeno-associated virus to selectively overexpress IDE (AAV-IDE) in the hippocampal neurons of Klf9-/- mice and found that the overexpression of IDE in hippocampal neurons ameliorated cognitive deficits and reduced the Aβ content in Klf9-/- mice. Additionally, we also stereotactically injected AAV-Klf9 into the hippocampal neurons of APP/PS1 mice and found that overexpression of Klf9 in hippocampal neurons ameliorated cognitive deficits and reduced Aβ levels in APP/PS1 mice. These findings suggest that downregulation of Klf9 may be a key factor in AD progression, as it reduces Aβ clearance by decreasing IDE expression. Overexpression or activation of Klf9 may be a potential strategy for preventing the pathogenesis of AD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Pharmacologica Sinica
Acta Pharmacologica Sinica 医学-化学综合
CiteScore
15.10
自引率
2.40%
发文量
4365
审稿时长
2 months
期刊介绍: APS (Acta Pharmacologica Sinica) welcomes submissions from diverse areas of pharmacology and the life sciences. While we encourage contributions across a broad spectrum, topics of particular interest include, but are not limited to: anticancer pharmacology, cardiovascular and pulmonary pharmacology, clinical pharmacology, drug discovery, gastrointestinal and hepatic pharmacology, genitourinary, renal, and endocrine pharmacology, immunopharmacology and inflammation, molecular and cellular pharmacology, neuropharmacology, pharmaceutics, and pharmacokinetics. Join us in sharing your research and insights in pharmacology and the life sciences.
期刊最新文献
Circular RNA hsa_circ_0000288 protects against epilepsy in mice by binding to and stabilizing caprin1 protein. Krüppel-like factor 9 alleviates Alzheimer's disease via IDE-mediated Aβ degradation. Co-inhibition of RAGE and TLR4 sensitizes pancreatic cancer to irreversible electroporation in mice by disrupting autophagy. Author Correction: Bicyclol protects HepG2 cells against D-galactosamine-induced apoptosis through inducing heat shock protein 27 and mitochondria associated pathway. Acyl-CoA thioesterase 8 induces gemcitabine resistance via regulation of lipid metabolism and antiferroptotic activity in pancreatic ductal adenocarcinoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1