VaxOptiML: leveraging machine learning for accurate prediction of MHC-I and II epitopes for optimized cancer immunotherapy.

IF 2.9 4区 医学 Q2 GENETICS & HEREDITY Immunogenetics Pub Date : 2024-12-07 DOI:10.1007/s00251-024-01361-9
Dhanushkumar T, Sunila B G, Sripad Rama Hebbar, Prasanna Kumar Selvam, Karthick Vasudevan
{"title":"VaxOptiML: leveraging machine learning for accurate prediction of MHC-I and II epitopes for optimized cancer immunotherapy.","authors":"Dhanushkumar T, Sunila B G, Sripad Rama Hebbar, Prasanna Kumar Selvam, Karthick Vasudevan","doi":"10.1007/s00251-024-01361-9","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer immunotherapy hinges on accurate epitope prediction for advancing vaccine development. VaxOptiML (available at https://vaxoptiml.streamlit.app/ ) is an integrated pipeline designed to enhance epitope prediction and prioritization. This study aims to develop and deploy a robust tool for accurate prediction and prioritization of highly immunogenic and optimized MHC-I and MHC-II T-cell epitopes for cancer vaccine development and immunotherapy. Utilizing a curated dataset of experimentally validated epitopes and employing sophisticated machine learning techniques, VaxOptiML features three models: epitope prediction from target sequences, personalized HLA typing, and prioritization the predicted epitopes based on immunogenicity scores. Our rigorous data extraction, cleaning, and feature extraction processes, coupled with model building, yield exceptional accuracy, sensitivity, specificity, and F1 score, surpassing existing prediction methods. Comprehensive visual representations underscore VaxOptiML's robustness and efficacy in accelerating epitope discovery and vaccine design for cancer immunotherapy. Deployed via Streamlit for public use, VaxOptiML enhances accessibility and usability for researchers and clinicians, demonstrating significant potential in cancer immunotherapy.</p>","PeriodicalId":13446,"journal":{"name":"Immunogenetics","volume":"77 1","pages":"8"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunogenetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00251-024-01361-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Cancer immunotherapy hinges on accurate epitope prediction for advancing vaccine development. VaxOptiML (available at https://vaxoptiml.streamlit.app/ ) is an integrated pipeline designed to enhance epitope prediction and prioritization. This study aims to develop and deploy a robust tool for accurate prediction and prioritization of highly immunogenic and optimized MHC-I and MHC-II T-cell epitopes for cancer vaccine development and immunotherapy. Utilizing a curated dataset of experimentally validated epitopes and employing sophisticated machine learning techniques, VaxOptiML features three models: epitope prediction from target sequences, personalized HLA typing, and prioritization the predicted epitopes based on immunogenicity scores. Our rigorous data extraction, cleaning, and feature extraction processes, coupled with model building, yield exceptional accuracy, sensitivity, specificity, and F1 score, surpassing existing prediction methods. Comprehensive visual representations underscore VaxOptiML's robustness and efficacy in accelerating epitope discovery and vaccine design for cancer immunotherapy. Deployed via Streamlit for public use, VaxOptiML enhances accessibility and usability for researchers and clinicians, demonstrating significant potential in cancer immunotherapy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Immunogenetics
Immunogenetics 医学-免疫学
CiteScore
6.20
自引率
6.20%
发文量
48
审稿时长
1 months
期刊介绍: Immunogenetics publishes original papers, brief communications, and reviews on research in the following areas: genetics and evolution of the immune system; genetic control of immune response and disease susceptibility; bioinformatics of the immune system; structure of immunologically important molecules; and immunogenetics of reproductive biology, tissue differentiation, and development.
期刊最新文献
Syndecan-1: a key player in health and disease. VaxOptiML: leveraging machine learning for accurate prediction of MHC-I and II epitopes for optimized cancer immunotherapy. Correction to: SNHG3 regulates NEIL3 via transcription factor E2F1 to mediate malignant proliferation of hepatocellular carcinoma. Novel polymorphic and copy number diversity in the antibody IGH locus of South African individuals. The sufficiency of genetic diagnosis in managing patients with inborn errors of immunity during prenatal care and childbearing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1