A mycoviral infection drives virulence and ecological fitness of the entomopathogenic fungus Beauveria bassiana.

IF 3.6 3区 生物学 Q1 ZOOLOGY Journal of invertebrate pathology Pub Date : 2024-12-05 DOI:10.1016/j.jip.2024.108251
F Rueda-Maíllo, I Garrido-Jurado, I Kotta-Loizou, E Quesada-Moraga
{"title":"A mycoviral infection drives virulence and ecological fitness of the entomopathogenic fungus Beauveria bassiana.","authors":"F Rueda-Maíllo, I Garrido-Jurado, I Kotta-Loizou, E Quesada-Moraga","doi":"10.1016/j.jip.2024.108251","DOIUrl":null,"url":null,"abstract":"<p><p>Entomopathogenic ascomycetes are important natural regulators of insect pest populations and an increasingly adopted microbial control option. Fungal virulence in entomopathogenic ascomycetes can be modified by mycoviruses, viruses that infect fungi, whereas the possible role of these viruses on the physical and biochemical properties of the virus-containing fungal strains and on their ecological fitness has remained largely unexplored. Here, utilizing a Beauveria bassiana strain naturally infected with two mycoviruses, Beauveria bassiana partitivirus 2 (BbPV-2) and Beauveria bassiana polymycovirus 1 (BbPmV-1), we found that the mycovirus-containing strain is hypervirulent towards the experimental insect Galleria mellonella and shows major physical and biochemical changes in spore size, isoelectric point, and Pr1 activity, but even more impactful, the mycoviral infection confers a significant environmental- abiotic and biotic stress tolerance to the fungus. Hence, mycovirus infection expanded the temperature range for fungal growth and germination, and improved tolerance to osmotic stress, water stress, and UV-B radiation. Similarly, the antagonistic activity of the mycovirus-containing strain against Trichoderma harzianum was increased as compared to the mycovirus-free one. Taken together, these data suggest for the first time a mycovirus related adaptation of key traits indicators of environmental competence of a beneficial fungus, rendering these mycoviruses as potent tools for entomopathogenic fungal strain selection and development as mycoinsecticides.</p>","PeriodicalId":16296,"journal":{"name":"Journal of invertebrate pathology","volume":" ","pages":"108251"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of invertebrate pathology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jip.2024.108251","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Entomopathogenic ascomycetes are important natural regulators of insect pest populations and an increasingly adopted microbial control option. Fungal virulence in entomopathogenic ascomycetes can be modified by mycoviruses, viruses that infect fungi, whereas the possible role of these viruses on the physical and biochemical properties of the virus-containing fungal strains and on their ecological fitness has remained largely unexplored. Here, utilizing a Beauveria bassiana strain naturally infected with two mycoviruses, Beauveria bassiana partitivirus 2 (BbPV-2) and Beauveria bassiana polymycovirus 1 (BbPmV-1), we found that the mycovirus-containing strain is hypervirulent towards the experimental insect Galleria mellonella and shows major physical and biochemical changes in spore size, isoelectric point, and Pr1 activity, but even more impactful, the mycoviral infection confers a significant environmental- abiotic and biotic stress tolerance to the fungus. Hence, mycovirus infection expanded the temperature range for fungal growth and germination, and improved tolerance to osmotic stress, water stress, and UV-B radiation. Similarly, the antagonistic activity of the mycovirus-containing strain against Trichoderma harzianum was increased as compared to the mycovirus-free one. Taken together, these data suggest for the first time a mycovirus related adaptation of key traits indicators of environmental competence of a beneficial fungus, rendering these mycoviruses as potent tools for entomopathogenic fungal strain selection and development as mycoinsecticides.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.10
自引率
5.90%
发文量
94
审稿时长
1 months
期刊介绍: The Journal of Invertebrate Pathology presents original research articles and notes on the induction and pathogenesis of diseases of invertebrates, including the suppression of diseases in beneficial species, and the use of diseases in controlling undesirable species. In addition, the journal publishes the results of physiological, morphological, genetic, immunological and ecological studies as related to the etiologic agents of diseases of invertebrates. The Journal of Invertebrate Pathology is the adopted journal of the Society for Invertebrate Pathology, and is available to SIP members at a special reduced price.
期刊最新文献
Development of a colloidal gold immunochromatographic strip for the rapid on-site detection of Ecytonucleospora hepatopenaei (EHP). Phasmavirus-derived genome sequences and endogenous viral element identified in the small hive beetle, Aethina tumida Murray. A honey bee-associated virus remains infectious and quantifiable in postmortem hosts. A mycoviral infection drives virulence and ecological fitness of the entomopathogenic fungus Beauveria bassiana. Pristionchus - Beetle associations: Towards a new natural history.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1