Raquel Toledano , María T. Osorio , Raquel Osorio , Manuel Toledano , Diego Jacho , Eda Yildirim-Ayan
{"title":"Tideglusib enhances ALP activity and upregulates RANKL expression in Osteoblast-macrophage Co-cultures within a 3D collagen scaffold","authors":"Raquel Toledano , María T. Osorio , Raquel Osorio , Manuel Toledano , Diego Jacho , Eda Yildirim-Ayan","doi":"10.1016/j.jdent.2024.105509","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><div>Tideglusib (Tx) is known for its osteogenic potential, yet its effects on the interplay between osteoblasts and M1 macrophages remain underexplored. This in vitro study aimed to isolate and evaluate both the individual and combined roles of M1 macrophages and osteoblasts in macrophage differentiation and osteoblast function, specifically focusing on how these interactions influence protein expression of osteogenesis and osteoclastogenesis in the presence or absence of Tx.</div></div><div><h3>Methods</h3><div>Osteoblast and macrophage cells were co-cultured in direct contact for 24 and 48 h, with or without the presence of Tx. ALP activity, the expression of inflammatory-related genes using RT-qPCR, and histological analyses were performed.</div></div><div><h3>Results</h3><div>Co-culturing osteoblasts and M1 macrophages with Tx increased alkaline phosphatase production, indicative of enhanced osteoblast activity. Histological assessments revealed that Tx treatment contributed to the stability and maintenance of cell morphology within the scaffold, suggesting a supportive environment for cell viability and function. Tx significantly reduced the expression of pro-inflammatory markers, such as TNF-α and IL-1β, in the co-culture at both 24 and 48 h Tx also effectively inhibited osteoclastogenic differentiation in macrophages, thereby diminishing their pro-inflammatory phenotype.</div></div><div><h3>Conclusions</h3><div>Tx increased ALP activity and produced a significant up-regulation of RANKL expression, indicating enhanced osteoblast differentiation and osteoclast activation. Tx mitigates macrophage-driven inflammation.</div></div><div><h3>Clinical significance</h3><div>Tx may enhance bone regeneration by modulating inflammatory responses and preserving cell integrity.</div></div>","PeriodicalId":15585,"journal":{"name":"Journal of dentistry","volume":"153 ","pages":"Article 105509"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of dentistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030057122400678X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives
Tideglusib (Tx) is known for its osteogenic potential, yet its effects on the interplay between osteoblasts and M1 macrophages remain underexplored. This in vitro study aimed to isolate and evaluate both the individual and combined roles of M1 macrophages and osteoblasts in macrophage differentiation and osteoblast function, specifically focusing on how these interactions influence protein expression of osteogenesis and osteoclastogenesis in the presence or absence of Tx.
Methods
Osteoblast and macrophage cells were co-cultured in direct contact for 24 and 48 h, with or without the presence of Tx. ALP activity, the expression of inflammatory-related genes using RT-qPCR, and histological analyses were performed.
Results
Co-culturing osteoblasts and M1 macrophages with Tx increased alkaline phosphatase production, indicative of enhanced osteoblast activity. Histological assessments revealed that Tx treatment contributed to the stability and maintenance of cell morphology within the scaffold, suggesting a supportive environment for cell viability and function. Tx significantly reduced the expression of pro-inflammatory markers, such as TNF-α and IL-1β, in the co-culture at both 24 and 48 h Tx also effectively inhibited osteoclastogenic differentiation in macrophages, thereby diminishing their pro-inflammatory phenotype.
Conclusions
Tx increased ALP activity and produced a significant up-regulation of RANKL expression, indicating enhanced osteoblast differentiation and osteoclast activation. Tx mitigates macrophage-driven inflammation.
Clinical significance
Tx may enhance bone regeneration by modulating inflammatory responses and preserving cell integrity.
期刊介绍:
The Journal of Dentistry has an open access mirror journal The Journal of Dentistry: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The Journal of Dentistry is the leading international dental journal within the field of Restorative Dentistry. Placing an emphasis on publishing novel and high-quality research papers, the Journal aims to influence the practice of dentistry at clinician, research, industry and policy-maker level on an international basis.
Topics covered include the management of dental disease, periodontology, endodontology, operative dentistry, fixed and removable prosthodontics, dental biomaterials science, long-term clinical trials including epidemiology and oral health, technology transfer of new scientific instrumentation or procedures, as well as clinically relevant oral biology and translational research.
The Journal of Dentistry will publish original scientific research papers including short communications. It is also interested in publishing review articles and leaders in themed areas which will be linked to new scientific research. Conference proceedings are also welcome and expressions of interest should be communicated to the Editor.