Bingjie Wu, Huijuan Xiong, Lin Zhuo, Yingjie Xiao, Jianbing Yan, Wenyu Yang
{"title":"Multi-view BLUP: a promising solution for post-omics data integrative prediction.","authors":"Bingjie Wu, Huijuan Xiong, Lin Zhuo, Yingjie Xiao, Jianbing Yan, Wenyu Yang","doi":"10.1016/j.jgg.2024.11.017","DOIUrl":null,"url":null,"abstract":"<p><p>Phenotypic prediction is a promising strategy for accelerating plant breeding. Data from multiple sources (called multi-view data) can provide complementary information to characterize a biological object from various aspects. By integrating multi-view information into phenotypic prediction, a multi-view best linear unbiased prediction (MVBLUP) method was proposed in this paper. To measure the importance of multiple data views, the differential evolution algorithm with an early stopping mechanism was used, by which we obtained a multi-view kinship matrix and then incorporated it into the BLUP model for phenotypic prediction. To further illustrate the characteristics of MVBLUP, we performed the empirical experiments on four multi-view datasets in different crops. Compared to the single-view method, the prediction accuracy of the MVBLUP method has improved by 0.038 to 0.201 on average. The results demonstrate that the MVBLUP is an effective integrative prediction method for multi-view data.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jgg.2024.11.017","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Phenotypic prediction is a promising strategy for accelerating plant breeding. Data from multiple sources (called multi-view data) can provide complementary information to characterize a biological object from various aspects. By integrating multi-view information into phenotypic prediction, a multi-view best linear unbiased prediction (MVBLUP) method was proposed in this paper. To measure the importance of multiple data views, the differential evolution algorithm with an early stopping mechanism was used, by which we obtained a multi-view kinship matrix and then incorporated it into the BLUP model for phenotypic prediction. To further illustrate the characteristics of MVBLUP, we performed the empirical experiments on four multi-view datasets in different crops. Compared to the single-view method, the prediction accuracy of the MVBLUP method has improved by 0.038 to 0.201 on average. The results demonstrate that the MVBLUP is an effective integrative prediction method for multi-view data.
期刊介绍:
The Journal of Genetics and Genomics (JGG, formerly known as Acta Genetica Sinica ) is an international journal publishing peer-reviewed articles of novel and significant discoveries in the fields of genetics and genomics. Topics of particular interest include but are not limited to molecular genetics, developmental genetics, cytogenetics, epigenetics, medical genetics, population and evolutionary genetics, genomics and functional genomics as well as bioinformatics and computational biology.