{"title":"Virtual MR Elastography and Multi-b-value DWI Models for Predicting Microvascular Invasion in Solitary BCLC Stage A Hepatocellular Carcinoma.","authors":"Zhaowei Chen, Yongjian Zhu, Leyao Wang, Rong Cong, Bing Feng, Wei Cai, Meng Liang, Dengfeng Li, Shuang Wang, Mancang Hu, Yongtao Mi, Sicong Wang, Xiaohong Ma, Xinming Zhao","doi":"10.1016/j.acra.2024.11.027","DOIUrl":null,"url":null,"abstract":"<p><strong>Rationale and objectives: </strong>To evaluate the performance of virtual MR elastography (vMRE) for predicting microvascular invasion (MVI) in Barcelona Clinic Liver Cancer (BCLC) stage A (≤ 5.0 cm) hepatocellular carcinoma (HCC) and to construct a combined nomogram based on vMRE, multi-b-value DWI models, and clinical-radiological (CR) features.</p><p><strong>Methods: </strong>Consecutive patients with suspected HCC who underwent multi-b-value DWI examinations were prospectively collected. Quantitative parameters from vMRE, mono-exponential, intravoxel incoherent motion, and diffusion kurtosis imaging models were obtained. Multivariate logistic regression was used to identify independent MVI predictors and build prediction models. A combined MRI_Score was constructed using independent quantitative parameters. A visualized nomogram was built based on significant CR features and MRI_Score. The predictive performance of quantitative parameters and models was evaluated.</p><p><strong>Results: </strong>The study included 103 patients (median age: 56 years; range: 35-70 years; 87 males and 16 females). Diffusion-based shear modulus (μ<sub>Diff</sub>) exhibited a predictive performance for MVI with area under the curve (AUC) of 0.735. The MRI_Score was developed employing true diffusion coefficient (D), mean kurtosis (MK), and μ<sub>Diff</sub>. CR model and MRI_Score achieved AUCs of 0.787 and 0.840, respectively. The combined nomogram based on AFP, corona enhancement, tumor capsule, TTPVI, and MRI_Score significantly improved the predictive performance to an AUC of 0.931 (Delong test p < 0.05).</p><p><strong>Conclusion: </strong>vMRE exhibited great potential for predicting MVI in BCLC stage A HCC. The combined nomogram integrating CR features, vMRE, and quantitative diffusion parameters significantly improved the predictive accuracy and could potentially assist clinicians in identifying appropriate treatment options.</p>","PeriodicalId":50928,"journal":{"name":"Academic Radiology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.acra.2024.11.027","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Rationale and objectives: To evaluate the performance of virtual MR elastography (vMRE) for predicting microvascular invasion (MVI) in Barcelona Clinic Liver Cancer (BCLC) stage A (≤ 5.0 cm) hepatocellular carcinoma (HCC) and to construct a combined nomogram based on vMRE, multi-b-value DWI models, and clinical-radiological (CR) features.
Methods: Consecutive patients with suspected HCC who underwent multi-b-value DWI examinations were prospectively collected. Quantitative parameters from vMRE, mono-exponential, intravoxel incoherent motion, and diffusion kurtosis imaging models were obtained. Multivariate logistic regression was used to identify independent MVI predictors and build prediction models. A combined MRI_Score was constructed using independent quantitative parameters. A visualized nomogram was built based on significant CR features and MRI_Score. The predictive performance of quantitative parameters and models was evaluated.
Results: The study included 103 patients (median age: 56 years; range: 35-70 years; 87 males and 16 females). Diffusion-based shear modulus (μDiff) exhibited a predictive performance for MVI with area under the curve (AUC) of 0.735. The MRI_Score was developed employing true diffusion coefficient (D), mean kurtosis (MK), and μDiff. CR model and MRI_Score achieved AUCs of 0.787 and 0.840, respectively. The combined nomogram based on AFP, corona enhancement, tumor capsule, TTPVI, and MRI_Score significantly improved the predictive performance to an AUC of 0.931 (Delong test p < 0.05).
Conclusion: vMRE exhibited great potential for predicting MVI in BCLC stage A HCC. The combined nomogram integrating CR features, vMRE, and quantitative diffusion parameters significantly improved the predictive accuracy and could potentially assist clinicians in identifying appropriate treatment options.
期刊介绍:
Academic Radiology publishes original reports of clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, image-guided interventions and related techniques. It also includes brief technical reports describing original observations, techniques, and instrumental developments; state-of-the-art reports on clinical issues, new technology and other topics of current medical importance; meta-analyses; scientific studies and opinions on radiologic education; and letters to the Editor.