Virtual MR Elastography and Multi-b-value DWI Models for Predicting Microvascular Invasion in Solitary BCLC Stage A Hepatocellular Carcinoma.

IF 3.8 2区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Academic Radiology Pub Date : 2024-12-05 DOI:10.1016/j.acra.2024.11.027
Zhaowei Chen, Yongjian Zhu, Leyao Wang, Rong Cong, Bing Feng, Wei Cai, Meng Liang, Dengfeng Li, Shuang Wang, Mancang Hu, Yongtao Mi, Sicong Wang, Xiaohong Ma, Xinming Zhao
{"title":"Virtual MR Elastography and Multi-b-value DWI Models for Predicting Microvascular Invasion in Solitary BCLC Stage A Hepatocellular Carcinoma.","authors":"Zhaowei Chen, Yongjian Zhu, Leyao Wang, Rong Cong, Bing Feng, Wei Cai, Meng Liang, Dengfeng Li, Shuang Wang, Mancang Hu, Yongtao Mi, Sicong Wang, Xiaohong Ma, Xinming Zhao","doi":"10.1016/j.acra.2024.11.027","DOIUrl":null,"url":null,"abstract":"<p><strong>Rationale and objectives: </strong>To evaluate the performance of virtual MR elastography (vMRE) for predicting microvascular invasion (MVI) in Barcelona Clinic Liver Cancer (BCLC) stage A (≤ 5.0 cm) hepatocellular carcinoma (HCC) and to construct a combined nomogram based on vMRE, multi-b-value DWI models, and clinical-radiological (CR) features.</p><p><strong>Methods: </strong>Consecutive patients with suspected HCC who underwent multi-b-value DWI examinations were prospectively collected. Quantitative parameters from vMRE, mono-exponential, intravoxel incoherent motion, and diffusion kurtosis imaging models were obtained. Multivariate logistic regression was used to identify independent MVI predictors and build prediction models. A combined MRI_Score was constructed using independent quantitative parameters. A visualized nomogram was built based on significant CR features and MRI_Score. The predictive performance of quantitative parameters and models was evaluated.</p><p><strong>Results: </strong>The study included 103 patients (median age: 56 years; range: 35-70 years; 87 males and 16 females). Diffusion-based shear modulus (μ<sub>Diff</sub>) exhibited a predictive performance for MVI with area under the curve (AUC) of 0.735. The MRI_Score was developed employing true diffusion coefficient (D), mean kurtosis (MK), and μ<sub>Diff</sub>. CR model and MRI_Score achieved AUCs of 0.787 and 0.840, respectively. The combined nomogram based on AFP, corona enhancement, tumor capsule, TTPVI, and MRI_Score significantly improved the predictive performance to an AUC of 0.931 (Delong test p < 0.05).</p><p><strong>Conclusion: </strong>vMRE exhibited great potential for predicting MVI in BCLC stage A HCC. The combined nomogram integrating CR features, vMRE, and quantitative diffusion parameters significantly improved the predictive accuracy and could potentially assist clinicians in identifying appropriate treatment options.</p>","PeriodicalId":50928,"journal":{"name":"Academic Radiology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.acra.2024.11.027","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Rationale and objectives: To evaluate the performance of virtual MR elastography (vMRE) for predicting microvascular invasion (MVI) in Barcelona Clinic Liver Cancer (BCLC) stage A (≤ 5.0 cm) hepatocellular carcinoma (HCC) and to construct a combined nomogram based on vMRE, multi-b-value DWI models, and clinical-radiological (CR) features.

Methods: Consecutive patients with suspected HCC who underwent multi-b-value DWI examinations were prospectively collected. Quantitative parameters from vMRE, mono-exponential, intravoxel incoherent motion, and diffusion kurtosis imaging models were obtained. Multivariate logistic regression was used to identify independent MVI predictors and build prediction models. A combined MRI_Score was constructed using independent quantitative parameters. A visualized nomogram was built based on significant CR features and MRI_Score. The predictive performance of quantitative parameters and models was evaluated.

Results: The study included 103 patients (median age: 56 years; range: 35-70 years; 87 males and 16 females). Diffusion-based shear modulus (μDiff) exhibited a predictive performance for MVI with area under the curve (AUC) of 0.735. The MRI_Score was developed employing true diffusion coefficient (D), mean kurtosis (MK), and μDiff. CR model and MRI_Score achieved AUCs of 0.787 and 0.840, respectively. The combined nomogram based on AFP, corona enhancement, tumor capsule, TTPVI, and MRI_Score significantly improved the predictive performance to an AUC of 0.931 (Delong test p < 0.05).

Conclusion: vMRE exhibited great potential for predicting MVI in BCLC stage A HCC. The combined nomogram integrating CR features, vMRE, and quantitative diffusion parameters significantly improved the predictive accuracy and could potentially assist clinicians in identifying appropriate treatment options.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Academic Radiology
Academic Radiology 医学-核医学
CiteScore
7.60
自引率
10.40%
发文量
432
审稿时长
18 days
期刊介绍: Academic Radiology publishes original reports of clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, image-guided interventions and related techniques. It also includes brief technical reports describing original observations, techniques, and instrumental developments; state-of-the-art reports on clinical issues, new technology and other topics of current medical importance; meta-analyses; scientific studies and opinions on radiologic education; and letters to the Editor.
期刊最新文献
Amide proton transfer-weighted (APTw) imaging and derived quantitative metrics in evaluating gliomas: Improved performance compared to magnetization transfer ratio asymmetry (MTRasym). Comparing the Diagnostic Performance of Ultrasound Elastography and Magnetic Resonance Imaging to Differentiate Benign and Malignant Breast Lesions: A Systematic Review and Meta-analysis. CT Multidimensional Radiomics Combined with Inflammatory Immune Score For Preoperative Prediction of Pathological Grade in Esophageal Squamous Cell Carcinoma. Development and Validation of a Predictive Model for Liver Failure After Transarterial Chemoembolization Using Gadoxetic Acid-Enhanced MRI and Functional Liver Imaging Score. Impact of Endorectal Coil Use on Extraprostatic Extension Detection in Prostate MRI: A Retrospective Monocentric Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1