Statistical modeling of single-cell epitranscriptomics enabled trajectory and regulatory inference of RNA methylation.

IF 11.1 Q1 CELL BIOLOGY Cell genomics Pub Date : 2025-01-08 Epub Date: 2024-12-05 DOI:10.1016/j.xgen.2024.100702
Haozhe Wang, Yue Wang, Jingxian Zhou, Bowen Song, Gang Tu, Anh Nguyen, Jionglong Su, Frans Coenen, Zhi Wei, Daniel J Rigden, Jia Meng
{"title":"Statistical modeling of single-cell epitranscriptomics enabled trajectory and regulatory inference of RNA methylation.","authors":"Haozhe Wang, Yue Wang, Jingxian Zhou, Bowen Song, Gang Tu, Anh Nguyen, Jionglong Su, Frans Coenen, Zhi Wei, Daniel J Rigden, Jia Meng","doi":"10.1016/j.xgen.2024.100702","DOIUrl":null,"url":null,"abstract":"<p><p>As a fundamental mechanism for gene expression regulation, post-transcriptional RNA methylation plays versatile roles in various biological processes and disease mechanisms. Recent advances in single-cell technology have enabled simultaneous profiling of transcriptome-wide RNA methylation in thousands of cells, holding the promise to provide deeper insights into the dynamics, functions, and regulation of RNA methylation. However, it remains a major challenge to determine how to best analyze single-cell epitranscriptomics data. In this study, we developed SigRM, a computational framework for effectively mining single-cell epitranscriptomics datasets with a large cell number, such as those produced by the scDART-seq technique from the SMART-seq2 platform. SigRM not only outperforms state-of-the-art models in RNA methylation site detection on both simulated and real datasets but also provides rigorous quantification metrics of RNA methylation levels. This facilitates various downstream analyses, including trajectory inference and regulatory network reconstruction concerning the dynamics of RNA methylation.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100702"},"PeriodicalIF":11.1000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770222/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2024.100702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

As a fundamental mechanism for gene expression regulation, post-transcriptional RNA methylation plays versatile roles in various biological processes and disease mechanisms. Recent advances in single-cell technology have enabled simultaneous profiling of transcriptome-wide RNA methylation in thousands of cells, holding the promise to provide deeper insights into the dynamics, functions, and regulation of RNA methylation. However, it remains a major challenge to determine how to best analyze single-cell epitranscriptomics data. In this study, we developed SigRM, a computational framework for effectively mining single-cell epitranscriptomics datasets with a large cell number, such as those produced by the scDART-seq technique from the SMART-seq2 platform. SigRM not only outperforms state-of-the-art models in RNA methylation site detection on both simulated and real datasets but also provides rigorous quantification metrics of RNA methylation levels. This facilitates various downstream analyses, including trajectory inference and regulatory network reconstruction concerning the dynamics of RNA methylation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单细胞表转录组学的统计建模使RNA甲基化的轨迹和调控推理成为可能。
作为基因表达调控的基本机制,转录后RNA甲基化在多种生物学过程和疾病机制中发挥着广泛的作用。单细胞技术的最新进展使得在数千个细胞中同时分析转录组范围内的RNA甲基化成为可能,有望为RNA甲基化的动力学、功能和调控提供更深入的见解。然而,确定如何最好地分析单细胞表转录组学数据仍然是一个主要挑战。在这项研究中,我们开发了SigRM,这是一个计算框架,用于有效挖掘具有大细胞数量的单细胞表转录组学数据集,例如来自SMART-seq2平台的scDART-seq技术产生的数据集。SigRM不仅在模拟和真实数据集上优于最先进的RNA甲基化位点检测模型,而且还提供了RNA甲基化水平的严格量化指标。这有助于各种下游分析,包括轨迹推断和有关RNA甲基化动力学的调控网络重建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
期刊最新文献
Genetic mapping of serum metabolome to chronic diseases among Han Chinese. Single-cell DNA sequencing reveals pervasive positive selection throughout preleukemic evolution. Tracing human trait evolution through integrative genomics and temporal annotations. Chromosome-scale genome assembly reveals how repeat elements shape non-coding RNA landscapes active during newt limb regeneration. A multi-modal transformer for cell type-agnostic regulatory predictions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1