{"title":"Kinetics, thresholds, and a comparison of mechanisms underlying systemic infection by Listeria monocytogenes","authors":"Tristen M. Jackson","doi":"10.1016/j.jtbi.2024.112009","DOIUrl":null,"url":null,"abstract":"<div><div>Studies on the system-scale pathogenesis of Listeria monocytogenes infection have classically focused on its ability to colonize in the intestines following an exposure event. However, despite this, many of the most dangerous complications arising from L. monocytogenes infection are observed days, weeks, or months after exposure, resulting indirectly from bacteria escaping this intestinal colonization hub and invading other organs. Over time, findings of various individual phenomena observed during systemic infection have accumulated, including a shift away from the principal route of intestinal dissemination, delays in bacterial colonization of the central nervous system, differing bacterial flux rates across organs, and multi-stability of bacterial population levels. To further our quantitative understanding of foodborne bacterial infection dynamics, a compartmental model of systemic infection that synthesizes these findings is proposed. Under parameterization to infection in BALB/c mice, the model is used to show a substantial decrease in bacterial populations resulting from dissemination through the mesenteric lymph nodes, as compared to the portal vein, when controlling for the number of bacteria passing through each route. Due to the compartmental nature of this model, we anticipate that this result may be paralleled in other microbes which make use of these pathways to escape the intestinal environment. Additionally, we predict thresholds for intestinal dissemination along each of these routes, which must be surpassed to induce systemic infection, and describe how these thresholds change over time. Supplementarily, logistic curves are fitted to synthetic data as a means of robustly quantifying the dose–response relationship beyond the intestinal barrier.</div></div>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":"599 ","pages":"Article 112009"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022519324002947","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Studies on the system-scale pathogenesis of Listeria monocytogenes infection have classically focused on its ability to colonize in the intestines following an exposure event. However, despite this, many of the most dangerous complications arising from L. monocytogenes infection are observed days, weeks, or months after exposure, resulting indirectly from bacteria escaping this intestinal colonization hub and invading other organs. Over time, findings of various individual phenomena observed during systemic infection have accumulated, including a shift away from the principal route of intestinal dissemination, delays in bacterial colonization of the central nervous system, differing bacterial flux rates across organs, and multi-stability of bacterial population levels. To further our quantitative understanding of foodborne bacterial infection dynamics, a compartmental model of systemic infection that synthesizes these findings is proposed. Under parameterization to infection in BALB/c mice, the model is used to show a substantial decrease in bacterial populations resulting from dissemination through the mesenteric lymph nodes, as compared to the portal vein, when controlling for the number of bacteria passing through each route. Due to the compartmental nature of this model, we anticipate that this result may be paralleled in other microbes which make use of these pathways to escape the intestinal environment. Additionally, we predict thresholds for intestinal dissemination along each of these routes, which must be surpassed to induce systemic infection, and describe how these thresholds change over time. Supplementarily, logistic curves are fitted to synthetic data as a means of robustly quantifying the dose–response relationship beyond the intestinal barrier.
期刊介绍:
The Journal of Theoretical Biology is the leading forum for theoretical perspectives that give insight into biological processes. It covers a very wide range of topics and is of interest to biologists in many areas of research, including:
• Brain and Neuroscience
• Cancer Growth and Treatment
• Cell Biology
• Developmental Biology
• Ecology
• Evolution
• Immunology,
• Infectious and non-infectious Diseases,
• Mathematical, Computational, Biophysical and Statistical Modeling
• Microbiology, Molecular Biology, and Biochemistry
• Networks and Complex Systems
• Physiology
• Pharmacodynamics
• Animal Behavior and Game Theory
Acceptable papers are those that bear significant importance on the biology per se being presented, and not on the mathematical analysis. Papers that include some data or experimental material bearing on theory will be considered, including those that contain comparative study, statistical data analysis, mathematical proof, computer simulations, experiments, field observations, or even philosophical arguments, which are all methods to support or reject theoretical ideas. However, there should be a concerted effort to make papers intelligible to biologists in the chosen field.