Developmental toxicity of alkylated PAHs and substituted phenanthrenes: Structural nuances drive diverse toxicity and AHR activation.

Chemosphere Pub Date : 2025-02-01 Epub Date: 2024-12-10 DOI:10.1016/j.chemosphere.2024.143894
Mackenzie L Morshead, Lisa Truong, Michael T Simonich, Jessica E Moran, Kim A Anderson, Robyn L Tanguay
{"title":"Developmental toxicity of alkylated PAHs and substituted phenanthrenes: Structural nuances drive diverse toxicity and AHR activation.","authors":"Mackenzie L Morshead, Lisa Truong, Michael T Simonich, Jessica E Moran, Kim A Anderson, Robyn L Tanguay","doi":"10.1016/j.chemosphere.2024.143894","DOIUrl":null,"url":null,"abstract":"<p><p>Polycyclic aromatic hydrocarbons (PAHs) are a diverse class of chemicals that occur in complex mixtures including parent and substituted PAHs. To understand the hazard posed by complex environmental PAH mixtures, we must first understand the structural drivers of activity and mode of action of individual PAHs. Understanding the toxicity of alkylated PAHs is important as they often occur in higher abundance in environmental matrices and can be more biologically active than their parent compounds. 104 alkylated PAHs were screened from 11 different parent compounds with emphasis on substituted phenanthrenes and their structurally dependent toxicity differences. Using a high-throughput early life stage zebrafish assay, embryos were exposed to concentrations between 0.1 and 100 μM and assessed for morphological and behavioral outcomes. The aryl hydrocarbon receptor (AHR) is often implicated in the toxicity of PAHs and the induction of cytochrome P4501A (cyp1a) is an excellent biomarker of Ahr activation. Embryos were evaluated for cyp1a induction using a fluorescence reporter line. Alkyl and polar phenanthrene derivatives were further assessed for spatial cyp1a expression and Ahr dependence of morphological effects. In the alkyl PAH screen 35 (33.7%) elicited a morphological or behavioral response and of those 23 (65%) also induced cyp1a. 31 (29.8%) of the chemicals only induced cyp1a. Toxicity varied substantially in response to substitution location, the amount of ring substitutions and alkyl chain length. Cyp1a induction varied by parent compound group and was a poor indicator of morphological or behavioral outcomes. Polar phenanthrenes were more biologically active than alkylated phenanthrene derivatives and their toxicity was not dependent upon the Ahr2, Ahr1a or Ahr1b when tested individually, despite cyp1a induction by 50% of polar phenanthrenes. Our results demonstrated that induction of cyp1a did not always correlate with PAH toxicity or Ahr dependence and that the type and location of phenanthrene substitution determined potency.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":" ","pages":"143894"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11732715/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.chemosphere.2024.143894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/10 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are a diverse class of chemicals that occur in complex mixtures including parent and substituted PAHs. To understand the hazard posed by complex environmental PAH mixtures, we must first understand the structural drivers of activity and mode of action of individual PAHs. Understanding the toxicity of alkylated PAHs is important as they often occur in higher abundance in environmental matrices and can be more biologically active than their parent compounds. 104 alkylated PAHs were screened from 11 different parent compounds with emphasis on substituted phenanthrenes and their structurally dependent toxicity differences. Using a high-throughput early life stage zebrafish assay, embryos were exposed to concentrations between 0.1 and 100 μM and assessed for morphological and behavioral outcomes. The aryl hydrocarbon receptor (AHR) is often implicated in the toxicity of PAHs and the induction of cytochrome P4501A (cyp1a) is an excellent biomarker of Ahr activation. Embryos were evaluated for cyp1a induction using a fluorescence reporter line. Alkyl and polar phenanthrene derivatives were further assessed for spatial cyp1a expression and Ahr dependence of morphological effects. In the alkyl PAH screen 35 (33.7%) elicited a morphological or behavioral response and of those 23 (65%) also induced cyp1a. 31 (29.8%) of the chemicals only induced cyp1a. Toxicity varied substantially in response to substitution location, the amount of ring substitutions and alkyl chain length. Cyp1a induction varied by parent compound group and was a poor indicator of morphological or behavioral outcomes. Polar phenanthrenes were more biologically active than alkylated phenanthrene derivatives and their toxicity was not dependent upon the Ahr2, Ahr1a or Ahr1b when tested individually, despite cyp1a induction by 50% of polar phenanthrenes. Our results demonstrated that induction of cyp1a did not always correlate with PAH toxicity or Ahr dependence and that the type and location of phenanthrene substitution determined potency.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
烷基化多环芳烃和取代菲的发育毒性:结构上的细微差别驱动不同的毒性和AHR活化。
多环芳烃(PAHs)是一类存在于复杂混合物中的化学物质,包括母体和取代的PAHs。为了了解复杂的环境多环芳烃混合物所造成的危害,我们必须首先了解单个多环芳烃活性的结构驱动因素和作用方式。了解烷基化多环芳烃的毒性是很重要的,因为它们通常在环境基质中以更高的丰度存在,并且可能比它们的母体化合物更具生物活性。从11种不同的母体化合物中筛选出104个烷基化多环芳烃,重点研究取代菲及其结构依赖性毒性差异。采用高通量早期斑马鱼实验,将胚胎暴露在0.1至100 μM的浓度中,并评估其形态和行为结果。芳烃受体(AHR)通常与多环芳烃的毒性有关,细胞色素P4501A (cyp1a)的诱导是AHR激活的一个很好的生物标志物。利用荧光报告系对胚胎进行cyp1a诱导评价。进一步评估烷基和极性菲衍生物cyp1a的空间表达和Ahr对形态效应的依赖性。在烷基多环芳烃筛选中,35个(33.7%)引起形态或行为反应,其中23个(65%)也诱导cyp1a。31种(29.8%)化学物质仅诱导cyp1a。毒性随取代位置、环取代量和烷基链长度的变化而变化。Cyp1a诱导因亲本化合物组而异,是形态或行为结果的不良指标。极性菲比烷基化菲衍生物具有更强的生物活性,尽管50%的极性菲诱导cyp1a,但在单独测试时,它们的毒性不依赖于Ahr2、Ahr1a或Ahr1b。我们的研究结果表明,cyp1a的诱导并不总是与多环芳烃毒性或Ahr依赖性相关,菲取代的类型和位置决定了效力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bacteriophages carry auxiliary metabolic genes related to energy, sulfur and phosphorus metabolism during a harmful algal bloom in a freshwater lake. Elucidating the phytotoxic endpoints of sub-chronic exposure to titanium dioxide nanoparticles in Endemic Persian Dracocephalum species. Retraction notice to "Simultaneous determination of hydrochlorothiazide, amlodipine, and telmisartan with spectrophotometric and HPLC green chemistry applications"[Chemosphere 303 (2022) 135074]. Phytoremediation evaluation of forever chemicals using hemp (Cannabis sativa L.): Pollen bioaccumulation and the risk to bees. Removal of sulfonamides by persulfate-based advanced oxidation: A mini review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1