Juan Li , Xiangtian Peng , Ping Zeng , Liang Shen , Mingyue Li , Yanfei Guo
{"title":"Removal of sulfonamides by persulfate-based advanced oxidation: A mini review","authors":"Juan Li , Xiangtian Peng , Ping Zeng , Liang Shen , Mingyue Li , Yanfei Guo","doi":"10.1016/j.chemosphere.2024.143874","DOIUrl":null,"url":null,"abstract":"<div><div>Sulfonamides (SAs) are known for their persistence and have become one of the most frequently detected pharmaceuticals and personal care products (PPCPs) in the environments. The widespread presence of SAs in natural waters, wastewater, soil, and sediment has prompted growing concern due to their potential threats to both human health and ecological systems. Persulfate-based advanced oxidation processes (PS-AOPs) have emerged as a promising technology for effectively mitigating the presence of these pollutants in the environment. This review offers a comprehensive overview of the degradation of SAs by PS-AOPs. The various activation methods of persulfate for the purpose of removing SAs are elaborated upon in detail. The factors influencing the removal efficiency of SAs through PS-AOPs is thoroughly discussed. Additionally, the conceivable mechanisms and degradation pathways associated with various types of SAs are discussed. Lastly, existing challenges are identified, and future prospects pertaining to the utilization of PS-AOPs for efficient SA removal are presented.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"370 ","pages":"Article 143874"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045653524027814","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Sulfonamides (SAs) are known for their persistence and have become one of the most frequently detected pharmaceuticals and personal care products (PPCPs) in the environments. The widespread presence of SAs in natural waters, wastewater, soil, and sediment has prompted growing concern due to their potential threats to both human health and ecological systems. Persulfate-based advanced oxidation processes (PS-AOPs) have emerged as a promising technology for effectively mitigating the presence of these pollutants in the environment. This review offers a comprehensive overview of the degradation of SAs by PS-AOPs. The various activation methods of persulfate for the purpose of removing SAs are elaborated upon in detail. The factors influencing the removal efficiency of SAs through PS-AOPs is thoroughly discussed. Additionally, the conceivable mechanisms and degradation pathways associated with various types of SAs are discussed. Lastly, existing challenges are identified, and future prospects pertaining to the utilization of PS-AOPs for efficient SA removal are presented.
期刊介绍:
Chemosphere, being an international multidisciplinary journal, is dedicated to publishing original communications and review articles on chemicals in the environment. The scope covers a wide range of topics, including the identification, quantification, behavior, fate, toxicology, treatment, and remediation of chemicals in the bio-, hydro-, litho-, and atmosphere, ensuring the broad dissemination of research in this field.