Spermidine alleviates thymopoiesis defects and aging of the peripheral T-cell population in mice after radiation exposure.

Kengo Yoshida, Zhenqiu Liu, Yoshiko Kubo, Masahiko Miura, Mika Yamaoka, Hiroko Nagamura, Munechika Misumi, Yoichiro Kusunoki
{"title":"Spermidine alleviates thymopoiesis defects and aging of the peripheral T-cell population in mice after radiation exposure.","authors":"Kengo Yoshida, Zhenqiu Liu, Yoshiko Kubo, Masahiko Miura, Mika Yamaoka, Hiroko Nagamura, Munechika Misumi, Yoichiro Kusunoki","doi":"10.1016/j.exger.2024.112646","DOIUrl":null,"url":null,"abstract":"<p><p>The T cell aging process can be modified by genotoxic factors, including ionizing radiation, and metabolic controls, such as caloric restriction; the former accelerates and the latter retards the process. However, the mechanisms by which these systemic factors interact to cause T cell aging remain unclear. This study investigated the naïve T-cell pool, thymic cellularity, and transcriptome in mice irradiated with 3.8 Gy at 5 weeks of age and treated 13 months later with 30 mM spermidine (SPD), a metabolism regulator. The number of conventional naïve CD4 and CD8 T cells in the peripheral blood decreased 14 months after irradiation whereas the number of virtual memory naïve T cells, which increased with age, further increased by irradiation. However, these radiation-related changes were not significant in similarly irradiated mice that were subsequently treated with SPD. The numbers of total, double-positive, and single-positive thymocytes were decreased by irradiation, whereas none were decreased in the irradiated mice treated with SPD. RNA sequencing of thymus cells revealed 803 upregulated genes in irradiated mice compared with those in non-irradiated control mice, with these genes enriched in leukocyte activation and inflammatory cytokine production. However, only 22 genes were upregulated in irradiated and SPD-treated mice, suggesting a reversal of many radiation-induced gene expression changes. These findings suggest that SPD may alleviate radiation-induced acceleration of T-cell aging, particularly by mitigating reduced thymopoiesis and inflammation. Further research is warranted to explore the rejuvenating potential of SPD and its mechanisms of action in accelerated T-cell aging.</p>","PeriodicalId":94003,"journal":{"name":"Experimental gerontology","volume":" ","pages":"112646"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental gerontology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.exger.2024.112646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The T cell aging process can be modified by genotoxic factors, including ionizing radiation, and metabolic controls, such as caloric restriction; the former accelerates and the latter retards the process. However, the mechanisms by which these systemic factors interact to cause T cell aging remain unclear. This study investigated the naïve T-cell pool, thymic cellularity, and transcriptome in mice irradiated with 3.8 Gy at 5 weeks of age and treated 13 months later with 30 mM spermidine (SPD), a metabolism regulator. The number of conventional naïve CD4 and CD8 T cells in the peripheral blood decreased 14 months after irradiation whereas the number of virtual memory naïve T cells, which increased with age, further increased by irradiation. However, these radiation-related changes were not significant in similarly irradiated mice that were subsequently treated with SPD. The numbers of total, double-positive, and single-positive thymocytes were decreased by irradiation, whereas none were decreased in the irradiated mice treated with SPD. RNA sequencing of thymus cells revealed 803 upregulated genes in irradiated mice compared with those in non-irradiated control mice, with these genes enriched in leukocyte activation and inflammatory cytokine production. However, only 22 genes were upregulated in irradiated and SPD-treated mice, suggesting a reversal of many radiation-induced gene expression changes. These findings suggest that SPD may alleviate radiation-induced acceleration of T-cell aging, particularly by mitigating reduced thymopoiesis and inflammation. Further research is warranted to explore the rejuvenating potential of SPD and its mechanisms of action in accelerated T-cell aging.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Experimental gerontology
Experimental gerontology Ageing, Biochemistry, Geriatrics and Gerontology
CiteScore
6.70
自引率
0.00%
发文量
0
审稿时长
66 days
期刊最新文献
Receiving financial support and its association with late-age depression: The mediating role of social engagement. Action observation with motor simulation of reactive stepping: A randomized study in older adults with a history of falls. Decoding the synergistic potential of herbal medicine and dietary supplements for treating postmenopausal osteoporosis. Spermidine alleviates thymopoiesis defects and aging of the peripheral T-cell population in mice after radiation exposure. Lower extremity muscle hypertrophy in response to resistance training in older adults: Systematic review, meta-analysis, and meta-regression of randomized controlled trials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1