{"title":"Long-Durable Potassium Ion Batteries Enabled by Medium-Entropy Lattice Engineering on Prussian Blue Analogues Cathodes","authors":"Yangsu Wang, Shenghui Zhou, Nan Li, Jiajia Han, Shilin Zhang, Zilong Zhuang, Zhefei Sun, Xuechun Wang, Xiaoyu Wu, Zhilin Chen, Jianhai Pan, Yanbin Shen, Jijian Xu, Yujie Zhu, Dong-Liang Peng, Zaiping Guo, Qiaobao Zhang","doi":"10.1002/aenm.202405007","DOIUrl":null,"url":null,"abstract":"Given their structural merits and electrochemical benefits, Prussian blue analogues (PBAs) hold great promise as cathode materials for potassium ion batteries (PIBs). However, these cathodes face formidable hurdles by structural failure and poor rate capability, primarily resulting from significant volumetric changes and sluggish kinetics during repeated intercalation/deintercalation of bulky K<sup>+</sup> ions. Theoretically, the study reveals explicitly that quaternary medium-entropy PBAs (Q-ME-PBAs), composed of Fe, Ni, Co, and Cu, demonstrate minimal lattice volume variations and low diffusion barriers during K<sup>+</sup> ion interactions. This endows Q-ME-PBA with favorable ability to induce significant 3D lattice distortion, enabling the material to endure structural alterations during K<sup>+</sup> ion movements and reinforce phase stability. Consequently, leveraging the structural and compositional advantages, the resultant Q-ME-PBAs cathode showcases exceptional cycling performance, maintaining over 90% capacity retention after 300 cycles at 0.25 C with a high initial coulombic efficiency of 94.4% and retaining 74.7% capacity even after an ultra-long 10 000 cycles at 3.75 C over 147 days. Notably, full cells paired with hard carbon and graphite anodes show outstanding cycling stability and rate capability. This study charts fresh design directions for crafting high-performance and durable cathodes through medium-entropy lattice engineering for advanced PIBs.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"37 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202405007","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Given their structural merits and electrochemical benefits, Prussian blue analogues (PBAs) hold great promise as cathode materials for potassium ion batteries (PIBs). However, these cathodes face formidable hurdles by structural failure and poor rate capability, primarily resulting from significant volumetric changes and sluggish kinetics during repeated intercalation/deintercalation of bulky K+ ions. Theoretically, the study reveals explicitly that quaternary medium-entropy PBAs (Q-ME-PBAs), composed of Fe, Ni, Co, and Cu, demonstrate minimal lattice volume variations and low diffusion barriers during K+ ion interactions. This endows Q-ME-PBA with favorable ability to induce significant 3D lattice distortion, enabling the material to endure structural alterations during K+ ion movements and reinforce phase stability. Consequently, leveraging the structural and compositional advantages, the resultant Q-ME-PBAs cathode showcases exceptional cycling performance, maintaining over 90% capacity retention after 300 cycles at 0.25 C with a high initial coulombic efficiency of 94.4% and retaining 74.7% capacity even after an ultra-long 10 000 cycles at 3.75 C over 147 days. Notably, full cells paired with hard carbon and graphite anodes show outstanding cycling stability and rate capability. This study charts fresh design directions for crafting high-performance and durable cathodes through medium-entropy lattice engineering for advanced PIBs.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.