Self-induced corrosion of Ni-rich cathode materials by fluor-lithium salts

IF 18.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Energy Storage Materials Pub Date : 2024-12-08 DOI:10.1016/j.ensm.2024.103953
Hao Huang, Jingang Zheng, Hongyang Li, Siqi Guan, Hongwei Zhao, Weichen Han, Han Zhang, Guangshen Jiang, Lixiang Li, Baigang An, Chengguo Sun
{"title":"Self-induced corrosion of Ni-rich cathode materials by fluor-lithium salts","authors":"Hao Huang, Jingang Zheng, Hongyang Li, Siqi Guan, Hongwei Zhao, Weichen Han, Han Zhang, Guangshen Jiang, Lixiang Li, Baigang An, Chengguo Sun","doi":"10.1016/j.ensm.2024.103953","DOIUrl":null,"url":null,"abstract":"Fluor-lithium salts have been found for the serious aluminum collector corrosion in lithium-ion batteries. Herein, we unexpectedly observe that adding 10 wt% fluor-lithium salts into Ni-rich cathode can lead to irreversible decay of the initial discharge capacity. The capacity loss is related to the surface phase corrosion of Ni-rich cathode materials, where the local nickel ions work as catalytic sites to induce the breakage of the C-F bond in fluor-lithium salts, promoting the decomposition of fluor-lithium salts under the driving force of external voltage exceeding 1.93 V. The formation of F<sup>−</sup> anion will attack Ni-rich cathode surface to produce nickel fluoride, resulting in the layered to rock-salt phase transformation. No corrosion behavior was found for iron, cobalt, and manganese of cathode materials. The synergistic activation by both nickel ions and voltage causes fluor-lithium salts to corrode the Ni-rich cathode materials.","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"1 1","pages":""},"PeriodicalIF":18.9000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ensm.2024.103953","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Fluor-lithium salts have been found for the serious aluminum collector corrosion in lithium-ion batteries. Herein, we unexpectedly observe that adding 10 wt% fluor-lithium salts into Ni-rich cathode can lead to irreversible decay of the initial discharge capacity. The capacity loss is related to the surface phase corrosion of Ni-rich cathode materials, where the local nickel ions work as catalytic sites to induce the breakage of the C-F bond in fluor-lithium salts, promoting the decomposition of fluor-lithium salts under the driving force of external voltage exceeding 1.93 V. The formation of F anion will attack Ni-rich cathode surface to produce nickel fluoride, resulting in the layered to rock-salt phase transformation. No corrosion behavior was found for iron, cobalt, and manganese of cathode materials. The synergistic activation by both nickel ions and voltage causes fluor-lithium salts to corrode the Ni-rich cathode materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
期刊最新文献
Combination of high-throughput phase field modeling and machine learning to study the performance evolution during lithium battery cycling Design of Dual-conducting Interface in Composite Cathode by Semi-Cyclized Polyacrylonitrile Soft Coating for Practical Solid-State Lithium-Metal Batteries Advancing High-voltage Halide-based Solid-state Batteries: Interfacial Challenges, Material Innovations, and Applications Flexible self-powered supercapacitors integrated with triboelectric nanogenerators A p-Type Small-Molecule Organic Cathode Simultaneously for High-Voltage Li/Na-Based Dual-Ion Full Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1