Ximing Zhang , Guoke Wei , Xinghan Huang , Hang Zhang , Xingyu Hao , Shujuan Tan , Kui Liu , Guangbin Ji
{"title":"Optimized pyramidal honeycomb PEEK/CF composites metastructure through 3D printing for broadband electromagnetic wave absorption","authors":"Ximing Zhang , Guoke Wei , Xinghan Huang , Hang Zhang , Xingyu Hao , Shujuan Tan , Kui Liu , Guangbin Ji","doi":"10.1016/j.mtphys.2024.101620","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a novel pyramidal honeycomb metastructure, which integrates the geometric advantages of honeycomb and pyramid designs to achieve highly effective electromagnetic wave (EMW) absorption with reduced thickness. The pyramidal honeycomb metastructure capitalizes on the angle insensitivity characteristics of pyramidal geometries while leveraging the weight reduction benefits inherent in honeycomb designs. This metastructure is fabricated using an additive manufacturing (AM) process, specifically employing PEEK/CF composite through the fused deposition modeling (FDM) method, followed by a spraying process. The dimensions of the pyramidal honeycomb metastructure were optimized using simulation process, and its EMW absorption mechanism was thoroughly analyzed. The effective absorption bandwidth (EAB) of the composite metastructure nearly spans the Ku, K, and Ka bands at thin thicknesses, maintaining high performance even at incidence angles up to 45°. This research provides a valuable approach for aerospace applications, expanding the potential of 3D printing technologies in multi-scenario EMW absorption.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"50 ","pages":"Article 101620"},"PeriodicalIF":10.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529324002967","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a novel pyramidal honeycomb metastructure, which integrates the geometric advantages of honeycomb and pyramid designs to achieve highly effective electromagnetic wave (EMW) absorption with reduced thickness. The pyramidal honeycomb metastructure capitalizes on the angle insensitivity characteristics of pyramidal geometries while leveraging the weight reduction benefits inherent in honeycomb designs. This metastructure is fabricated using an additive manufacturing (AM) process, specifically employing PEEK/CF composite through the fused deposition modeling (FDM) method, followed by a spraying process. The dimensions of the pyramidal honeycomb metastructure were optimized using simulation process, and its EMW absorption mechanism was thoroughly analyzed. The effective absorption bandwidth (EAB) of the composite metastructure nearly spans the Ku, K, and Ka bands at thin thicknesses, maintaining high performance even at incidence angles up to 45°. This research provides a valuable approach for aerospace applications, expanding the potential of 3D printing technologies in multi-scenario EMW absorption.
期刊介绍:
Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.