Dynamic cycling enhances battery lifetime

IF 49.7 1区 材料科学 Q1 ENERGY & FUELS Nature Energy Pub Date : 2024-12-09 DOI:10.1038/s41560-024-01675-8
Alexis Geslin, Le Xu, Devi Ganapathi, Kevin Moy, William C. Chueh, Simona Onori
{"title":"Dynamic cycling enhances battery lifetime","authors":"Alexis Geslin, Le Xu, Devi Ganapathi, Kevin Moy, William C. Chueh, Simona Onori","doi":"10.1038/s41560-024-01675-8","DOIUrl":null,"url":null,"abstract":"<p>Laboratory ageing campaigns elucidate the complex degradation behaviour of most technologies. In lithium-ion batteries, such studies aim to capture realistic ageing mechanisms to optimize cell chemistries and designs as well as to engineer reliable battery management systems. In this study, we systematically compared dynamic discharge profiles representative of electric vehicle driving to the well-accepted constant current profiles. Surprisingly, we found that dynamic discharge enhances lifetime substantially compared with constant current discharge. Specifically, for the same average current and voltage window, varying the dynamic discharge profile led to an increase of up to 38% in equivalent full cycles at end of life. Explainable machine learning revealed the importance of both low-frequency current pulses and time-induced ageing under these realistic discharge conditions. This work quantifies the importance of evaluating new battery chemistries and designs with realistic load profiles, highlighting the opportunities to revisit our understanding of ageing mechanisms at the chemistry, material and cell levels.</p>","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"4 1","pages":""},"PeriodicalIF":49.7000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41560-024-01675-8","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Laboratory ageing campaigns elucidate the complex degradation behaviour of most technologies. In lithium-ion batteries, such studies aim to capture realistic ageing mechanisms to optimize cell chemistries and designs as well as to engineer reliable battery management systems. In this study, we systematically compared dynamic discharge profiles representative of electric vehicle driving to the well-accepted constant current profiles. Surprisingly, we found that dynamic discharge enhances lifetime substantially compared with constant current discharge. Specifically, for the same average current and voltage window, varying the dynamic discharge profile led to an increase of up to 38% in equivalent full cycles at end of life. Explainable machine learning revealed the importance of both low-frequency current pulses and time-induced ageing under these realistic discharge conditions. This work quantifies the importance of evaluating new battery chemistries and designs with realistic load profiles, highlighting the opportunities to revisit our understanding of ageing mechanisms at the chemistry, material and cell levels.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态循环提高电池寿命
实验室老化运动阐明了大多数技术的复杂退化行为。在锂离子电池中,此类研究旨在捕捉现实的老化机制,以优化电池化学和设计,以及设计可靠的电池管理系统。在本研究中,我们系统地比较了代表电动汽车行驶的动态放电曲线与公认的恒流曲线。令人惊讶的是,我们发现动态放电比恒流放电大大提高了寿命。具体来说,对于相同的平均电流和电压窗口,改变动态放电曲线导致在寿命结束时等效全周期内增加高达38%。可解释的机器学习揭示了在这些实际放电条件下低频电流脉冲和时间诱导老化的重要性。这项工作量化了评估新电池化学成分和设计的重要性,并强调了在化学、材料和电池水平上重新审视我们对老化机制的理解的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Energy
Nature Energy Energy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍: Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies. With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector. Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence. In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.
期刊最新文献
Power price stability and the insurance value of renewable technologies Improving the operational stability of electrochemical CO2 reduction reaction via salt precipitation understanding and management Citizen-financed solar projects A microscopic look at degradation Lithium Triangle supply chains
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1