Quantum critical metals and loss of quasiparticles

IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Nature Physics Pub Date : 2024-12-09 DOI:10.1038/s41567-024-02679-7
Haoyu Hu, Lei Chen, Qimiao Si
{"title":"Quantum critical metals and loss of quasiparticles","authors":"Haoyu Hu, Lei Chen, Qimiao Si","doi":"10.1038/s41567-024-02679-7","DOIUrl":null,"url":null,"abstract":"Strange metals develop near quantum critical points in a variety of strongly correlated systems. Some of the issues that are central to the field include how the quantum critical state loses quasiparticles, how it drives superconductivity and to what extent the strange-metal physics in different classes of correlated systems are interconnected. In this Review, we survey some of these issues from the vantage point of heavy-fermion metals. We describe the notion of Kondo destruction and how it leads to several crucial effects. These include a transformation of the Fermi surface from large to small when the system is tuned across the quantum critical point, a loss of quasiparticles everywhere on the Fermi surface when it is perched at the quantum critical point and a dynamical Planckian scaling in various physical properties including charge responses. We close with a discussion about the connections between the strange-metal physics in heavy-fermion metals and its counterparts in the cuprates and other correlated materials. The strange-metal state that develops close to a quantum critical point in strongly correlated electron systems is not well understood. This Review summarizes how the notion of Kondo destruction can describe much of the experimental phenomenology.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 12","pages":"1863-1873"},"PeriodicalIF":17.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41567-024-02679-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Strange metals develop near quantum critical points in a variety of strongly correlated systems. Some of the issues that are central to the field include how the quantum critical state loses quasiparticles, how it drives superconductivity and to what extent the strange-metal physics in different classes of correlated systems are interconnected. In this Review, we survey some of these issues from the vantage point of heavy-fermion metals. We describe the notion of Kondo destruction and how it leads to several crucial effects. These include a transformation of the Fermi surface from large to small when the system is tuned across the quantum critical point, a loss of quasiparticles everywhere on the Fermi surface when it is perched at the quantum critical point and a dynamical Planckian scaling in various physical properties including charge responses. We close with a discussion about the connections between the strange-metal physics in heavy-fermion metals and its counterparts in the cuprates and other correlated materials. The strange-metal state that develops close to a quantum critical point in strongly correlated electron systems is not well understood. This Review summarizes how the notion of Kondo destruction can describe much of the experimental phenomenology.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Physics
Nature Physics 物理-物理:综合
CiteScore
30.40
自引率
2.00%
发文量
349
审稿时长
4-8 weeks
期刊介绍: Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests. The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.
期刊最新文献
Observation of a finite-energy phase transition in a one-dimensional quantum simulator Precision spectroscopy of the hyperfine components of the 1S–2S transition in antihydrogen Links that build Muddy the baseballs Autonomous cars and the long road ahead
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1