{"title":"SUMOylation controls peptide processing to generate damage-associated molecular patterns in Arabidopsis","authors":"Cheng Zhang, Yuanyuan Wu, Jiuer Liu, Bing Song, Zhibo Yu, Jian-Feng Li, Chengwei Yang, Jianbin Lai","doi":"10.1016/j.devcel.2024.11.010","DOIUrl":null,"url":null,"abstract":"Upon injury, both mammalian and plant cells activate a survival mechanism by sensing endogenous damage-associated molecular patterns (DAMPs). Plant elicitor peptides (Peps), a representative DAMP, are released from their precursors (PROPEPs; Precursors of Peps) through cleavage by metacaspases (MCs), but the control of Pep generation remains unclear. Here, we discovered that several PROPEPs in <em>Arabidopsis thaliana</em> are substrates for SUMOylation and that Ca<sup>2+</sup> upregulates PROPEP1 SUMOylation, facilitated by the SUMO E3 ligase SAP and MIZ1 domain-containing ligase1 (SIZ1). Mutations at the SUMOylation site on PROPEP1, or at the SUMO-interacting motifs (SIMs) on its protease MC4, reduced the PROPEP1-MC4 association and PROPEP1 cleavage. Overexpression of the wild-type form, but not the SUMOylation-defective variant of PROPEP1, enhanced plant tolerance to cell wall damage. Consistently, SIZ1 contributes to PROPEP1 processing and cell wall damage responses. These findings support the idea that SUMOylation promotes PROPEP1 cleavage via MC4 and provide insights into how DAMP generation is controlled in eukaryotic cells.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"55 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.devcel.2024.11.010","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Upon injury, both mammalian and plant cells activate a survival mechanism by sensing endogenous damage-associated molecular patterns (DAMPs). Plant elicitor peptides (Peps), a representative DAMP, are released from their precursors (PROPEPs; Precursors of Peps) through cleavage by metacaspases (MCs), but the control of Pep generation remains unclear. Here, we discovered that several PROPEPs in Arabidopsis thaliana are substrates for SUMOylation and that Ca2+ upregulates PROPEP1 SUMOylation, facilitated by the SUMO E3 ligase SAP and MIZ1 domain-containing ligase1 (SIZ1). Mutations at the SUMOylation site on PROPEP1, or at the SUMO-interacting motifs (SIMs) on its protease MC4, reduced the PROPEP1-MC4 association and PROPEP1 cleavage. Overexpression of the wild-type form, but not the SUMOylation-defective variant of PROPEP1, enhanced plant tolerance to cell wall damage. Consistently, SIZ1 contributes to PROPEP1 processing and cell wall damage responses. These findings support the idea that SUMOylation promotes PROPEP1 cleavage via MC4 and provide insights into how DAMP generation is controlled in eukaryotic cells.
期刊介绍:
Developmental Cell, established in 2001, is a comprehensive journal that explores a wide range of topics in cell and developmental biology. Our publication encompasses work across various disciplines within biology, with a particular emphasis on investigating the intersections between cell biology, developmental biology, and other related fields. Our primary objective is to present research conducted through a cell biological perspective, addressing the essential mechanisms governing cell function, cellular interactions, and responses to the environment. Moreover, we focus on understanding the collective behavior of cells, culminating in the formation of tissues, organs, and whole organisms, while also investigating the consequences of any malfunctions in these intricate processes.