首页 > 最新文献

Developmental cell最新文献

英文 中文
Mitochondrial CCN1 drives ferroptosis via fatty acid β-oxidation 线粒体CCN1通过脂肪酸β氧化驱动铁下垂
IF 11.8 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-04-24 DOI: 10.1016/j.devcel.2025.04.004
Wanxin Guo, Congcong Zhang, Qianjun Zhou, Tianxiang Chen, Xin Xu, Jianfeng Zhang, Xuewen Yu, Han Wu, Xiao Zhang, Lifang Ma, Kun Qian, Daniel J. Klionsky, Rui Kang, Guido Kroemer, Yongchun Yu, Daolin Tang, Jiayi Wang
Ferroptosis is a type of oxidative cell death, although its key metabolic processes remain incompletely understood. Here, we employ a comprehensive multiomics screening approach that identified cellular communication network factor 1 (CCN1) as a metabolic catalyst of ferroptosis. Upon ferroptosis induction, CCN1 relocates to mitochondrial complexes, facilitating electron transfer flavoprotein subunit alpha (ETFA)-dependent fatty acid β-oxidation. Compared with a traditional carnitine O-palmitoyltransferase 2 (CPT2)-ETFA pathway, the CCN1-ETFA pathway provides additional substrates for mitochondrial reactive oxygen species production, thereby stimulating ferroptosis through lipid peroxidation. A high-fat diet can enhance the anticancer efficacy of ferroptosis in lung cancer mouse models, depending on CCN1. Furthermore, primary lung cancer cells derived from patients with hypertriglyceridemia or high CCN1 expression demonstrate increased susceptibility to ferroptosis in vitro and in vivo. These findings do not only identify the metabolic role of mitochondrial CCN1 but also establish a strategy for enhancing ferroptosis-based anticancer therapies.
铁下垂是一种氧化性细胞死亡,尽管其关键代谢过程仍不完全清楚。在这里,我们采用了一种全面的多组学筛选方法,确定了细胞通信网络因子1 (CCN1)作为铁死亡的代谢催化剂。在铁下垂诱导下,CCN1迁移到线粒体复合体,促进电子转移黄蛋白亚单位α (ETFA)依赖性脂肪酸β-氧化。与传统的肉碱o -棕榈酰基转移酶2 (CPT2)-ETFA途径相比,CCN1-ETFA途径为线粒体活性氧的产生提供了额外的底物,从而通过脂质过氧化刺激铁死亡。高脂肪饮食可以增强肺癌小鼠模型中铁下垂的抗癌作用,这取决于CCN1。此外,来自高甘油三酯血症或CCN1高表达患者的原发性肺癌细胞在体外和体内均表现出对铁死亡的易感性增加。这些发现不仅确定了线粒体CCN1的代谢作用,而且还建立了一种增强基于铁中毒的抗癌治疗的策略。
{"title":"Mitochondrial CCN1 drives ferroptosis via fatty acid β-oxidation","authors":"Wanxin Guo, Congcong Zhang, Qianjun Zhou, Tianxiang Chen, Xin Xu, Jianfeng Zhang, Xuewen Yu, Han Wu, Xiao Zhang, Lifang Ma, Kun Qian, Daniel J. Klionsky, Rui Kang, Guido Kroemer, Yongchun Yu, Daolin Tang, Jiayi Wang","doi":"10.1016/j.devcel.2025.04.004","DOIUrl":"https://doi.org/10.1016/j.devcel.2025.04.004","url":null,"abstract":"Ferroptosis is a type of oxidative cell death, although its key metabolic processes remain incompletely understood. Here, we employ a comprehensive multiomics screening approach that identified cellular communication network factor 1 (CCN1) as a metabolic catalyst of ferroptosis. Upon ferroptosis induction, CCN1 relocates to mitochondrial complexes, facilitating electron transfer flavoprotein subunit alpha (ETFA)-dependent fatty acid β-oxidation. Compared with a traditional carnitine O-palmitoyltransferase 2 (CPT2)-ETFA pathway, the CCN1-ETFA pathway provides additional substrates for mitochondrial reactive oxygen species production, thereby stimulating ferroptosis through lipid peroxidation. A high-fat diet can enhance the anticancer efficacy of ferroptosis in lung cancer mouse models, depending on CCN1. Furthermore, primary lung cancer cells derived from patients with hypertriglyceridemia or high CCN1 expression demonstrate increased susceptibility to ferroptosis <em>in vitro</em> and <em>in vivo</em>. These findings do not only identify the metabolic role of mitochondrial CCN1 but also establish a strategy for enhancing ferroptosis-based anticancer therapies.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"219 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143866994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic control of H2A.Zub and H3K27me3 by ambient temperature during cell fate determination in Arabidopsis H2A的动态控制。Zub和H3K27me3在拟南芥细胞命运决定中的作用
IF 11.8 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-04-22 DOI: 10.1016/j.devcel.2025.04.002
Kehui Zhu, Jinchao Chen, Long Zhao, Fangfang Lu, Jia Deng, Xuelei Lin, Chongsheng He, Doris Wagner, Jun Xiao
Crucial to plant development, ambient temperature triggers intricate mechanisms enabling adaptive responses to temperature variations. The precise coordination of chromatin modifications in shaping cell developmental fate under diverse temperatures remains elusive. Our study, integrating comprehensive transcriptome, epigenome profiling, and genetics, demonstrates that lower ambient temperature (16°C) partially restores developmental defects caused by H3K27me3 loss in prc2 mutants by specifically depositing H2A.Zub at ectopically expressed embryonic genes in Arabidopsis, such as ABA INSENSITIVE 3 (ABI3) and LEAFY COTYLEDON 1 (LEC1). This deposition leads to downregulation of these genes and compensates for H3K27me3 depletion. Polycomb-repressive complex 1 (PRC1)-catalyzed H2A.Zub and PRC2-catalyzed H3K27me3 play roles in silencing transcription of embryonic genes for post-germination development. Low-temperature-induced reduction of TOE1 protein level decelerates H2A.Z turnover at specific loci, sustaining repression of embryonic genes and alleviating requirement for PRC2-H3K27me3 at post-germination stage. Our findings offer mechanistic insights into the cooperative epigenetic layers, facilitating plant adaptation to varying environmental temperatures.
环境温度对植物发育至关重要,它触发了复杂的机制,使植物能够对温度变化做出适应性反应。染色质修饰在不同温度下形成细胞发育命运的精确协调仍然是难以捉摸的。我们的研究综合了转录组、表观基因组分析和遗传学,表明较低的环境温度(16°C)通过特异性沉积H2A,部分恢复了prc2突变体中H3K27me3缺失引起的发育缺陷。Zub在拟南芥中异位表达ABA不敏感基因3 (ABI3)和叶子叶don 1 (LEC1)等胚胎基因。这种沉积导致这些基因的下调,并补偿H3K27me3的耗竭。polycomb - repression complex 1 (PRC1)催化H2A。Zub和prc2催化的H3K27me3在沉默胚胎基因转录以促进萌发后发育中发挥作用。低温诱导TOE1蛋白水平的降低减慢了H2A。特定位点的Z转换,维持胚胎基因的抑制,减轻萌发后阶段对PRC2-H3K27me3的需求。我们的发现提供了合作表观遗传层的机制见解,促进植物适应不同的环境温度。
{"title":"Dynamic control of H2A.Zub and H3K27me3 by ambient temperature during cell fate determination in Arabidopsis","authors":"Kehui Zhu, Jinchao Chen, Long Zhao, Fangfang Lu, Jia Deng, Xuelei Lin, Chongsheng He, Doris Wagner, Jun Xiao","doi":"10.1016/j.devcel.2025.04.002","DOIUrl":"https://doi.org/10.1016/j.devcel.2025.04.002","url":null,"abstract":"Crucial to plant development, ambient temperature triggers intricate mechanisms enabling adaptive responses to temperature variations. The precise coordination of chromatin modifications in shaping cell developmental fate under diverse temperatures remains elusive. Our study, integrating comprehensive transcriptome, epigenome profiling, and genetics, demonstrates that lower ambient temperature (16°C) partially restores developmental defects caused by H3K27me3 loss in <em>prc2</em> mutants by specifically depositing H2A.Zub at ectopically expressed embryonic genes in <em>Arabidopsis</em>, such as <em>ABA INSENSITIVE 3</em> (<em>ABI3</em>) and <em>LEAFY COTYLEDON 1</em> (<em>LEC1</em>). This deposition leads to downregulation of these genes and compensates for H3K27me3 depletion. Polycomb-repressive complex 1 (PRC1)-catalyzed H2A.Zub and PRC2-catalyzed H3K27me3 play roles in silencing transcription of embryonic genes for post-germination development. Low-temperature-induced reduction of TOE1 protein level decelerates H2A.Z turnover at specific loci, sustaining repression of embryonic genes and alleviating requirement for PRC2-H3K27me3 at post-germination stage. Our findings offer mechanistic insights into the cooperative epigenetic layers, facilitating plant adaptation to varying environmental temperatures.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"29 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143857780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nitric oxide controls stomatal development and stress responses by inhibiting MPK6 phosphorylation via S-nitrosylation in Arabidopsis 在拟南芥中,一氧化氮通过s -亚硝基化抑制MPK6磷酸化来控制气孔发育和胁迫反应
IF 11.8 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-04-21 DOI: 10.1016/j.devcel.2025.04.001
Danfeng Wang, Hongyan Guo, Xinru Gong, Lichao Chen, Huifang Lin, Shiping Wang, Tianpeng Feng, Yanyan Yi, Wan Wang, Shuhua Yang, Jie Le, Lixin Zhang, Jianru Zuo
In plants, stomata on the aerial epidermis play critical roles in various biological processes, including gas exchange, photosynthesis, transpiration, and immunity. Stomatal development is negatively and positively controlled by the mitogen-activated protein kinase (MAPK) cascade and nitric oxide (NO), respectively. However, the regulatory scheme of stomatal development by these signaling pathways remains elusive. Here, we show that NO-controlled stomatal development in Arabidopsis is genetically dependent on MPK3 and MPK6. Moreover, NO-controlled S-nitrosylation of MPK6 at cysteine (Cys)-201 inhibits its phosphorylation, resulting in the stabilization of SPEECHLESS (SPCH), a master regulator of stomatal lineage initiation, thereby promoting stomatal development. An MPK6C201S mutation confers NO insensitivity during stomatal development and stress responses. We propose that NO positively controls stomatal development and stress responses by inhibiting the MPK6 activity via S-nitrosylation, thus identifying a mechanism linking the coupled NO-MAPK signaling to specific biological outputs.
在植物中,气生表皮上的气孔在气体交换、光合作用、蒸腾和免疫等多种生物过程中起着至关重要的作用。气孔发育分别受丝裂原活化蛋白激酶(MAPK)级联和一氧化氮(NO)的负向和正向调控。然而,这些信号通路对气孔发育的调控机制尚不清楚。本研究表明,no控制的拟南芥气孔发育在遗传上依赖于MPK3和MPK6。此外,no控制的MPK6在半胱氨酸(Cys)-201位点的s -亚硝基化抑制了其磷酸化,从而稳定了气孔谱系起始的主要调控因子-无言(SPCH),从而促进了气孔发育。MPK6C201S突变在气孔发育和胁迫响应过程中导致NO不敏感。我们提出NO通过s -亚硝基化抑制MPK6活性,从而积极控制气孔发育和胁迫反应,从而确定了NO- mapk信号耦合与特定生物输出的机制。
{"title":"Nitric oxide controls stomatal development and stress responses by inhibiting MPK6 phosphorylation via S-nitrosylation in Arabidopsis","authors":"Danfeng Wang, Hongyan Guo, Xinru Gong, Lichao Chen, Huifang Lin, Shiping Wang, Tianpeng Feng, Yanyan Yi, Wan Wang, Shuhua Yang, Jie Le, Lixin Zhang, Jianru Zuo","doi":"10.1016/j.devcel.2025.04.001","DOIUrl":"https://doi.org/10.1016/j.devcel.2025.04.001","url":null,"abstract":"In plants, stomata on the aerial epidermis play critical roles in various biological processes, including gas exchange, photosynthesis, transpiration, and immunity. Stomatal development is negatively and positively controlled by the mitogen-activated protein kinase (MAPK) cascade and nitric oxide (NO), respectively. However, the regulatory scheme of stomatal development by these signaling pathways remains elusive. Here, we show that NO-controlled stomatal development in <em>Arabidopsis</em> is genetically dependent on <em>MPK3</em> and <em>MPK6</em>. Moreover, NO-controlled <em>S</em>-nitrosylation of MPK6 at cysteine (Cys)-201 inhibits its phosphorylation, resulting in the stabilization of SPEECHLESS (SPCH), a master regulator of stomatal lineage initiation, thereby promoting stomatal development. An <em>MPK6</em><sup><em>C201S</em></sup> mutation confers NO insensitivity during stomatal development and stress responses. We propose that NO positively controls stomatal development and stress responses by inhibiting the MPK6 activity via <em>S</em>-nitrosylation, thus identifying a mechanism linking the coupled NO-MAPK signaling to specific biological outputs.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"56 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143853191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual states of murine Bmi1-expressing intestinal stem cells drive epithelial development utilizing non-canonical Wnt signaling 表达bmi1的小鼠肠道干细胞的双重状态利用非规范Wnt信号驱动上皮发育
IF 11.8 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-04-21 DOI: 10.1016/j.devcel.2025.03.014
Nicholas R. Smith, Nicole R. Giske, Sidharth K. Sengupta, Patrick Conley, John R. Swain, Ashvin Nair, Kathryn L. Fowler, Christopher Klocke, Yeon Jung Yoo, Ashley N. Anderson, Nasim Sanati, Kristof Torkenczy, Andrew C. Adey, Jared M. Fischer, Guanming Wu, Melissa H. Wong
Intestinal epithelial development and homeostasis critically rely upon balanced stem cell proliferation, involving slow-cycling/label-retaining and active-cycling/canonical Wnt-dependent intestinal stem cell (ISC) subtypes. ISC regulation during development remains poorly understood but has important implications for establishing key mechanisms governing tissue maintenance. Herein, we identify Bmi1+ cells as functional stem cells present in early murine intestinal development, prior to Lgr5-expressing ISCs. Lineage tracing and single-cell RNA sequencing identify that Bmi1+ ISCs can trace to Lgr5+ ISCs and other differentiated lineages. Initially highly proliferative, Bmi1+ ISCs transition to slow-cycling states as Lgr5+ ISCs emerge. Non-canonical Wnt signaling regulates the proliferative Bmi1+ cell state. These findings highlight the dynamic interplay between stem cell populations and the opposing Wnt pathways that govern proliferation—ultimately having implications for tissue development, homeostasis, regeneration, and tumorigenesis. Understanding these fundamental developmental mechanisms is critical for understanding adult intestinal maintenance.
肠上皮的发育和稳态严重依赖于平衡的干细胞增殖,包括慢循环/标签保留和活跃循环/典型wnt依赖性肠干细胞(ISC)亚型。发育过程中ISC的调控仍然知之甚少,但对于建立控制组织维持的关键机制具有重要意义。在此,我们发现Bmi1+细胞是早期小鼠肠道发育中存在的功能性干细胞,早于表达lgr5的ISCs。谱系追踪和单细胞RNA测序发现Bmi1+ ISCs可以追溯到Lgr5+ ISCs和其他分化谱系。Bmi1+ ISCs最初是高度增殖的,随着Lgr5+ ISCs的出现,Bmi1+ ISCs转变为慢循环状态。非典型Wnt信号调节增殖的Bmi1+细胞状态。这些发现强调了干细胞群和控制增殖的相反Wnt通路之间的动态相互作用,最终对组织发育、体内平衡、再生和肿瘤发生具有影响。了解这些基本的发育机制对于理解成人肠道维持至关重要。
{"title":"Dual states of murine Bmi1-expressing intestinal stem cells drive epithelial development utilizing non-canonical Wnt signaling","authors":"Nicholas R. Smith, Nicole R. Giske, Sidharth K. Sengupta, Patrick Conley, John R. Swain, Ashvin Nair, Kathryn L. Fowler, Christopher Klocke, Yeon Jung Yoo, Ashley N. Anderson, Nasim Sanati, Kristof Torkenczy, Andrew C. Adey, Jared M. Fischer, Guanming Wu, Melissa H. Wong","doi":"10.1016/j.devcel.2025.03.014","DOIUrl":"https://doi.org/10.1016/j.devcel.2025.03.014","url":null,"abstract":"Intestinal epithelial development and homeostasis critically rely upon balanced stem cell proliferation, involving slow-cycling/label-retaining and active-cycling/canonical Wnt-dependent intestinal stem cell (ISC) subtypes. ISC regulation during development remains poorly understood but has important implications for establishing key mechanisms governing tissue maintenance. Herein, we identify Bmi1<sup>+</sup> cells as functional stem cells present in early murine intestinal development, prior to Lgr5-expressing ISCs. Lineage tracing and single-cell RNA sequencing identify that Bmi1<sup>+</sup> ISCs can trace to Lgr5<sup>+</sup> ISCs and other differentiated lineages. Initially highly proliferative, Bmi1<sup>+</sup> ISCs transition to slow-cycling states as Lgr5<sup>+</sup> ISCs emerge. Non-canonical Wnt signaling regulates the proliferative Bmi1<sup>+</sup> cell state. These findings highlight the dynamic interplay between stem cell populations and the opposing Wnt pathways that govern proliferation—ultimately having implications for tissue development, homeostasis, regeneration, and tumorigenesis. Understanding these fundamental developmental mechanisms is critical for understanding adult intestinal maintenance.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"10 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143853192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemical disarmament in plant defense: Erucamide blocks bacterial type III injectisome assembly 植物防御中的化学裁军:紫核酰胺阻断细菌III型注射体组装
IF 11.8 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-04-21 DOI: 10.1016/j.devcel.2025.03.013
Alisdair R. Fernie, Feng Zhu
Metabolic immunity is a powerful mechanism by which plants defend themselves. In a recent issue of Science, Miao et al. identify that erucamide, a primary fatty amide resulting from the condensation of the carboxy group of erucic acid with ammonia present in many plant species, inhibits type III injectisome assembly as an ancient conserved defense mechanism.
代谢免疫是植物保护自己的一种强大机制。在最近一期的《科学》杂志上,Miao等人发现,芥子酰胺是一种主要的脂肪酰胺,由芥子酸的羧基与氨缩合而成,存在于许多植物物种中,作为一种古老的保守防御机制,它可以抑制III型注射体的组装。
{"title":"Chemical disarmament in plant defense: Erucamide blocks bacterial type III injectisome assembly","authors":"Alisdair R. Fernie, Feng Zhu","doi":"10.1016/j.devcel.2025.03.013","DOIUrl":"https://doi.org/10.1016/j.devcel.2025.03.013","url":null,"abstract":"Metabolic immunity is a powerful mechanism by which plants defend themselves. In a recent issue of <em>Science</em>, Miao et al. identify that erucamide, a primary fatty amide resulting from the condensation of the carboxy group of erucic acid with ammonia present in many plant species, inhibits type III injectisome assembly as an ancient conserved defense mechanism.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"268 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143853182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nuage in color: Systematic protein tagging shows the compositional complexity of germ granules 颜色模糊:系统的蛋白质标记显示了胚芽颗粒组成的复杂性
IF 11.8 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-04-21 DOI: 10.1016/j.devcel.2025.03.015
Laura L. Thomas, Devavrat M. Bodas, Geraldine Seydoux
In this issue of Developmental Cell, Huang et al. generate a library of C. elegans strains to systematically characterize germ granule composition. This survey catalogs condensate proteins in an intact organism using endogenous tags and sets the stage for future studies of condensate composition and function.
在本期《发育细胞》中,Huang等人建立了秀丽隐杆线虫菌株文库,以系统地表征细菌颗粒组成。本研究使用内源性标签对完整生物体中的凝析蛋白进行了编目,并为凝析蛋白的组成和功能的未来研究奠定了基础。
{"title":"Nuage in color: Systematic protein tagging shows the compositional complexity of germ granules","authors":"Laura L. Thomas, Devavrat M. Bodas, Geraldine Seydoux","doi":"10.1016/j.devcel.2025.03.015","DOIUrl":"https://doi.org/10.1016/j.devcel.2025.03.015","url":null,"abstract":"In this issue of <em>Developmental Cell</em>, Huang et al. generate a library of <em>C. elegans</em> strains to systematically characterize germ granule composition. This survey catalogs condensate proteins in an intact organism using endogenous tags and sets the stage for future studies of condensate composition and function.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"4 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143853193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking plant regeneration: The role for glutathione 解锁植物再生:谷胱甘肽的作用
IF 11.8 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-04-21 DOI: 10.1016/j.devcel.2025.03.012
Eva Benková
In this issue of Developmental Cell, Lee et al. identify a pivotal role for glutathione (GSH) in plant regeneration, a vital biological process enabling plants to regrow tissues and organs after injury. Applying single-cell RNA sequencing (scRNA-seq) and live imaging, the authors demonstrate that GSH, released upon tissue damage, accelerates cell-cycle transitions, particularly shortening the G1 phase, thereby facilitating efficient organ regeneration.
在本期的《发育细胞》中,Lee等人发现谷胱甘肽(GSH)在植物再生中的关键作用,这是一个重要的生物过程,使植物在损伤后能够再生组织和器官。通过单细胞RNA测序(scRNA-seq)和实时成像,作者证明GSH在组织损伤时释放,加速细胞周期转变,特别是缩短G1期,从而促进有效的器官再生。
{"title":"Unlocking plant regeneration: The role for glutathione","authors":"Eva Benková","doi":"10.1016/j.devcel.2025.03.012","DOIUrl":"https://doi.org/10.1016/j.devcel.2025.03.012","url":null,"abstract":"In this issue of <em>Developmental Cell</em>, Lee et al. identify a pivotal role for glutathione (GSH) in plant regeneration, a vital biological process enabling plants to regrow tissues and organs after injury. Applying single-cell RNA sequencing (scRNA-seq) and live imaging, the authors demonstrate that GSH, released upon tissue damage, accelerates cell-cycle transitions, particularly shortening the G1 phase, thereby facilitating efficient organ regeneration.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"82 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143853168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RIF1 controls replication timing in early mouse embryos independently of lamina-associated nuclear organization RIF1控制早期小鼠胚胎的复制时间,不依赖于层相关的核组织
IF 11.8 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-04-21 DOI: 10.1016/j.devcel.2025.03.016
Tsunetoshi Nakatani, Tamas Schauer, Mrinmoy Pal, Andreas Ettinger, Luis Altamirano-Pacheco, Julia Zorn, David M. Gilbert, Maria-Elena Torres-Padilla
Cells must duplicate their genome before they divide to ensure equal transmission of genetic information. The genome is replicated with a defined temporal order, replication timing (RT), which is cell-type specific and linked to 3D-genome organization. During mammalian development, RT is initially not well defined and becomes progressively consolidated from the 4-cell stage. However, the molecular regulators are unknown. Here, by combining loss-of-function analysis with genome-wide investigation of RT in mouse embryos, we identify Rap1 interacting factor 1 (RIF1) as a regulator of the progressive consolidation of RT. Embryos without RIF1 show DNA replication features of an early, more totipotent state. RIF1 regulates the progressive stratification of RT values and its depletion leads to global RT changes and a more heterogeneous RT program. Developmental RT changes are disentangled from changes in transcription and nuclear organization, specifically nuclear lamina association. Our work provides molecular understanding of replication and genome organization at the beginning of mammalian development.
细胞在分裂之前必须复制它们的基因组,以确保遗传信息的平等传递。基因组的复制有一个确定的时间顺序,复制时间(RT),这是细胞类型特异性的,与3d基因组组织有关。在哺乳动物发育过程中,RT最初不明确,并从4细胞阶段逐渐巩固。然而,分子调控因子是未知的。在这里,通过结合功能缺失分析和小鼠胚胎中RT的全基因组研究,我们发现Rap1相互作用因子1 (RIF1)是RT逐渐巩固的调节因子。没有RIF1的胚胎显示出早期,更全能性状态的DNA复制特征。RIF1调节RT值的逐步分层,其耗竭导致全球RT变化和更异质性的RT程序。发育的RT变化与转录和核组织的变化,特别是核层结合的变化无关。我们的工作提供了在哺乳动物发育初期对复制和基因组组织的分子理解。
{"title":"RIF1 controls replication timing in early mouse embryos independently of lamina-associated nuclear organization","authors":"Tsunetoshi Nakatani, Tamas Schauer, Mrinmoy Pal, Andreas Ettinger, Luis Altamirano-Pacheco, Julia Zorn, David M. Gilbert, Maria-Elena Torres-Padilla","doi":"10.1016/j.devcel.2025.03.016","DOIUrl":"https://doi.org/10.1016/j.devcel.2025.03.016","url":null,"abstract":"Cells must duplicate their genome before they divide to ensure equal transmission of genetic information. The genome is replicated with a defined temporal order, replication timing (RT), which is cell-type specific and linked to 3D-genome organization. During mammalian development, RT is initially not well defined and becomes progressively consolidated from the 4-cell stage. However, the molecular regulators are unknown. Here, by combining loss-of-function analysis with genome-wide investigation of RT in mouse embryos, we identify Rap1 interacting factor 1 (RIF1) as a regulator of the progressive consolidation of RT. Embryos without RIF1 show DNA replication features of an early, more totipotent state. RIF1 regulates the progressive stratification of RT values and its depletion leads to global RT changes and a more heterogeneous RT program. Developmental RT changes are disentangled from changes in transcription and nuclear organization, specifically nuclear lamina association. Our work provides molecular understanding of replication and genome organization at the beginning of mammalian development.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"108 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143853190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
N-cadherin-triggered myosin II inactivation provides tumor cells with a mechanical cell competition advantage and chemotherapy resistance n-钙粘蛋白引发的肌球蛋白II失活为肿瘤细胞提供了机械的细胞竞争优势和化疗耐药性
IF 11.8 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-04-10 DOI: 10.1016/j.devcel.2025.03.011
Zhenlin Dai, Shengkai Chen, Jianbo Shi, Mengyu Rui, Qin Xu
(Developmental Cell 60, ◼◼◼–◼◼◼; June 23, 2025)
发育细胞60号,原原2025年6月23日)
{"title":"N-cadherin-triggered myosin II inactivation provides tumor cells with a mechanical cell competition advantage and chemotherapy resistance","authors":"Zhenlin Dai, Shengkai Chen, Jianbo Shi, Mengyu Rui, Qin Xu","doi":"10.1016/j.devcel.2025.03.011","DOIUrl":"https://doi.org/10.1016/j.devcel.2025.03.011","url":null,"abstract":"(Developmental Cell <em>60</em>, ◼◼◼–◼◼◼; June 23, 2025)","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"42 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143820086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptional conservation and evolutionary divergence of cell types across mammalian hypothalamus development 哺乳动物下丘脑发育中细胞类型的转录保护和进化分化
IF 11.8 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-04-08 DOI: 10.1016/j.devcel.2025.03.009
Zhen-Hua Chen, Taotao Bruce Pan, Yu-Hong Zhang, Ben Wang, Xue-Lian Sun, Meixi Gao, Yang Sun, Mingrui Xu, Shuhui Han, Xiang Shi, Felipe Correa-da-Silva, Chenlu Yang, Junfu Guo, Haoda Wu, Yu Zheng Li, Xiu-Qin Liu, Fei Gao, Zhiheng Xu, Shengjin Xu, Xin Liu, Qing-Feng Wu
The hypothalamus, an “ancient” subcortical brain structure, maintains physiological homeostasis and controls native behaviors. The evolution of homeostatic regulation and behavioral control in mammals may rely on adaptable neuronal identity establishment but conserved neural patterning mechanisms during neurodevelopment. Here, we combined single-cell, single-nucleus, and spatial transcriptomic datasets to map the spatial patterning of diverse progenitor domains and reconstruct their neurogenic lineages in the developing human and mouse hypothalamus. While the regional organizers orchestrating neural patterning are conserved between primates and rodents, we identified a human-enriched neuronal subtype and found a substantial increase in neuromodulatory gene expression among human neurons. Furthermore, cross-species comparison demonstrated a potential redistribution of two neuroendocrine neuronal subtypes and a shift in inter-transmitter and transmitter-peptide coupling within hypothalamic dopamine neurons. Together, our study lays a critical foundation for understanding cellular development and evolution of the mammalian hypothalamus.
下丘脑,一个“古老的”皮层下大脑结构,维持生理稳态和控制自然行为。哺乳动物的内稳态调节和行为控制的进化可能依赖于适应性神经元身份的建立,但在神经发育过程中存在保守的神经模式机制。在这里,我们结合单细胞、单核和空间转录组数据集来绘制不同祖结构域的空间模式,并重建其在发育中的人类和小鼠下丘脑中的神经发生谱系。虽然在灵长类动物和啮齿类动物之间协调神经模式的区域组织者是保守的,但我们发现了一种人类富集的神经元亚型,并发现人类神经元中神经调节基因的表达显著增加。此外,跨物种比较表明两种神经内分泌神经元亚型的潜在再分配以及下丘脑多巴胺神经元内递质间和递质肽偶联的转变。总之,我们的研究为理解哺乳动物下丘脑的细胞发育和进化奠定了重要的基础。
{"title":"Transcriptional conservation and evolutionary divergence of cell types across mammalian hypothalamus development","authors":"Zhen-Hua Chen, Taotao Bruce Pan, Yu-Hong Zhang, Ben Wang, Xue-Lian Sun, Meixi Gao, Yang Sun, Mingrui Xu, Shuhui Han, Xiang Shi, Felipe Correa-da-Silva, Chenlu Yang, Junfu Guo, Haoda Wu, Yu Zheng Li, Xiu-Qin Liu, Fei Gao, Zhiheng Xu, Shengjin Xu, Xin Liu, Qing-Feng Wu","doi":"10.1016/j.devcel.2025.03.009","DOIUrl":"https://doi.org/10.1016/j.devcel.2025.03.009","url":null,"abstract":"The hypothalamus, an “ancient” subcortical brain structure, maintains physiological homeostasis and controls native behaviors. The evolution of homeostatic regulation and behavioral control in mammals may rely on adaptable neuronal identity establishment but conserved neural patterning mechanisms during neurodevelopment. Here, we combined single-cell, single-nucleus, and spatial transcriptomic datasets to map the spatial patterning of diverse progenitor domains and reconstruct their neurogenic lineages in the developing human and mouse hypothalamus. While the regional organizers orchestrating neural patterning are conserved between primates and rodents, we identified a human-enriched neuronal subtype and found a substantial increase in neuromodulatory gene expression among human neurons. Furthermore, cross-species comparison demonstrated a potential redistribution of two neuroendocrine neuronal subtypes and a shift in inter-transmitter and transmitter-peptide coupling within hypothalamic dopamine neurons. Together, our study lays a critical foundation for understanding cellular development and evolution of the mammalian hypothalamus.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"92 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143798387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Developmental cell
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1