Thermally induced neuronal plasticity in the hypothalamus mediates heat tolerance

IF 21.2 1区 医学 Q1 NEUROSCIENCES Nature neuroscience Pub Date : 2024-12-09 DOI:10.1038/s41593-024-01830-0
Wojciech Ambroziak, Sara Nencini, Jörg Pohle, Kristina Zuza, Gabriela Pino, Sofia Lundh, Carolina Araujo-Sousa, Larissa I. L. Goetz, Katrin Schrenk-Siemens, Gokul Manoj, Mildred A. Herrera, Claudio Acuna, Jan Siemens
{"title":"Thermally induced neuronal plasticity in the hypothalamus mediates heat tolerance","authors":"Wojciech Ambroziak, Sara Nencini, Jörg Pohle, Kristina Zuza, Gabriela Pino, Sofia Lundh, Carolina Araujo-Sousa, Larissa I. L. Goetz, Katrin Schrenk-Siemens, Gokul Manoj, Mildred A. Herrera, Claudio Acuna, Jan Siemens","doi":"10.1038/s41593-024-01830-0","DOIUrl":null,"url":null,"abstract":"<p>Heat acclimation is an adaptive process that improves physiological performance and supports survival in the face of increasing environmental temperatures, but the underlying mechanisms are not well understood. Here we identified a discrete group of neurons in the mouse hypothalamic preoptic area (POA) that rheostatically increase their activity over the course of heat acclimation, a property required for mice to become heat tolerant. In non-acclimated mice, peripheral thermoafferent pathways via the parabrachial nucleus activate POA neurons and mediate acute heat-defense mechanisms. However, long-term heat exposure promotes the POA neurons to gain intrinsically warm-sensitive activity, independent of thermoafferent parabrachial input. This newly gained cell-autonomous warm sensitivity is required to recruit peripheral heat tolerance mechanisms in acclimated animals. This pacemaker-like, warm-sensitive activity is driven by a combination of increased sodium leak current and enhanced utilization of the Na<sub>V</sub>1.3 ion channel. We propose that this salient neuronal plasticity mechanism adaptively drives acclimation to promote heat tolerance.</p>","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"17 1","pages":""},"PeriodicalIF":21.2000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41593-024-01830-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Heat acclimation is an adaptive process that improves physiological performance and supports survival in the face of increasing environmental temperatures, but the underlying mechanisms are not well understood. Here we identified a discrete group of neurons in the mouse hypothalamic preoptic area (POA) that rheostatically increase their activity over the course of heat acclimation, a property required for mice to become heat tolerant. In non-acclimated mice, peripheral thermoafferent pathways via the parabrachial nucleus activate POA neurons and mediate acute heat-defense mechanisms. However, long-term heat exposure promotes the POA neurons to gain intrinsically warm-sensitive activity, independent of thermoafferent parabrachial input. This newly gained cell-autonomous warm sensitivity is required to recruit peripheral heat tolerance mechanisms in acclimated animals. This pacemaker-like, warm-sensitive activity is driven by a combination of increased sodium leak current and enhanced utilization of the NaV1.3 ion channel. We propose that this salient neuronal plasticity mechanism adaptively drives acclimation to promote heat tolerance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
下丘脑的热诱导神经元可塑性介导热耐受性
热适应是一种适应过程,可以提高生理性能,支持在环境温度升高时的生存,但其潜在机制尚不清楚。在这里,我们在小鼠下丘脑视前区(POA)中发现了一组离散的神经元,它们在热适应过程中变异性地增加了它们的活动,这是小鼠变得耐热所必需的特性。在未驯化的小鼠中,通过臂旁核的外周热传入通路激活POA神经元并介导急性热防御机制。然而,长期的热暴露促进POA神经元获得固有的温敏活动,独立于臂旁热传入输入。这种新获得的细胞自主温敏性需要在适应的动物中招募外周耐热机制。这种类似于起搏器的热敏活性是由钠泄漏电流增加和NaV1.3离子通道利用率提高共同驱动的。我们认为这种显著的神经元可塑性机制自适应地驱动驯化以促进耐热性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature neuroscience
Nature neuroscience 医学-神经科学
CiteScore
38.60
自引率
1.20%
发文量
212
审稿时长
1 months
期刊介绍: Nature Neuroscience, a multidisciplinary journal, publishes papers of the utmost quality and significance across all realms of neuroscience. The editors welcome contributions spanning molecular, cellular, systems, and cognitive neuroscience, along with psychophysics, computational modeling, and nervous system disorders. While no area is off-limits, studies offering fundamental insights into nervous system function receive priority. The journal offers high visibility to both readers and authors, fostering interdisciplinary communication and accessibility to a broad audience. It maintains high standards of copy editing and production, rigorous peer review, rapid publication, and operates independently from academic societies and other vested interests. In addition to primary research, Nature Neuroscience features news and views, reviews, editorials, commentaries, perspectives, book reviews, and correspondence, aiming to serve as the voice of the global neuroscience community.
期刊最新文献
α-Synuclein deposition in the kidney may contribute to Parkinson’s disease Propagation of pathologic α-synuclein from kidney to brain may contribute to Parkinson’s disease Mapping the cellular etiology of schizophrenia and complex brain phenotypes Neural populations are dynamic but constrained Propagation of neuronal micronuclei regulates microglial characteristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1