Dissociable control of motivation and reinforcement by distinct ventral striatal dopamine receptors

IF 21.2 1区 医学 Q1 NEUROSCIENCES Nature neuroscience Pub Date : 2024-12-09 DOI:10.1038/s41593-024-01819-9
Juan Enriquez-Traba, Miguel Arenivar, Hector E. Yarur-Castillo, Chloe Noh, Rodolfo J. Flores, Tenley Weil, Snehashis Roy, Ted B. Usdin, Christina T. LaGamma, Huikun Wang, Valerie S. Tsai, Damien Kerspern, Amy E. Moritz, David R. Sibley, Andrew Lutas, Rosario Moratalla, Zachary Freyberg, Hugo A. Tejeda
{"title":"Dissociable control of motivation and reinforcement by distinct ventral striatal dopamine receptors","authors":"Juan Enriquez-Traba, Miguel Arenivar, Hector E. Yarur-Castillo, Chloe Noh, Rodolfo J. Flores, Tenley Weil, Snehashis Roy, Ted B. Usdin, Christina T. LaGamma, Huikun Wang, Valerie S. Tsai, Damien Kerspern, Amy E. Moritz, David R. Sibley, Andrew Lutas, Rosario Moratalla, Zachary Freyberg, Hugo A. Tejeda","doi":"10.1038/s41593-024-01819-9","DOIUrl":null,"url":null,"abstract":"Dopamine (DA) release in striatal circuits, including the nucleus accumbens medial shell (mNAcSh), tracks separable features of reward like motivation and reinforcement. However, the cellular and circuit mechanisms by which DA receptors transform DA release into distinct constructs of reward remain unclear. Here we show that DA D3 receptor (D3R) signaling in the mNAcSh drives motivated behavior in mice by regulating local microcircuits. Furthermore, D3Rs coexpress with DA D1 receptors, which regulate reinforcement, but not motivation. Paralleling dissociable roles in reward function, we report nonoverlapping physiological actions of D3R and DA D1 receptor signaling in mNAcSh neurons. Our results establish a fundamental framework wherein DA signaling within the same nucleus accumbens cell type is physiologically compartmentalized via actions on distinct DA receptors. This structural and functional organization provides neurons in a limbic circuit with the unique ability to orchestrate dissociable aspects of reward-related behaviors relevant to the etiology of neuropsychiatric disorders. Ventral striatal dopamine D3 and D1 receptors regulate motivation and reinforcement, respectively, through dissociable physiological actions.","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"28 1","pages":"105-121"},"PeriodicalIF":21.2000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41593-024-01819-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Dopamine (DA) release in striatal circuits, including the nucleus accumbens medial shell (mNAcSh), tracks separable features of reward like motivation and reinforcement. However, the cellular and circuit mechanisms by which DA receptors transform DA release into distinct constructs of reward remain unclear. Here we show that DA D3 receptor (D3R) signaling in the mNAcSh drives motivated behavior in mice by regulating local microcircuits. Furthermore, D3Rs coexpress with DA D1 receptors, which regulate reinforcement, but not motivation. Paralleling dissociable roles in reward function, we report nonoverlapping physiological actions of D3R and DA D1 receptor signaling in mNAcSh neurons. Our results establish a fundamental framework wherein DA signaling within the same nucleus accumbens cell type is physiologically compartmentalized via actions on distinct DA receptors. This structural and functional organization provides neurons in a limbic circuit with the unique ability to orchestrate dissociable aspects of reward-related behaviors relevant to the etiology of neuropsychiatric disorders. Ventral striatal dopamine D3 and D1 receptors regulate motivation and reinforcement, respectively, through dissociable physiological actions.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同腹侧纹状体多巴胺受体对动机和强化的分离控制
纹状体回路中多巴胺(DA)的释放,包括伏隔核内侧壳(mNAcSh),跟踪奖励的可分离特征,如动机和强化。然而,DA受体将DA释放转化为不同的奖励结构的细胞和电路机制仍不清楚。在这里,我们发现macsh中的DA D3受体(D3R)信号通过调节局部微电路驱动小鼠的动机行为。此外,D3Rs与DA D1受体共表达,后者调节强化,但不调节动机。我们报道了mmnacsh神经元中D3R和DA D1受体信号通路的不重叠生理作用,这与奖赏功能中可分离的作用平行。我们的研究结果建立了一个基本框架,其中相同伏隔核细胞类型内的DA信号通过对不同DA受体的作用在生理上被划分。这种结构和功能组织为边缘回路中的神经元提供了独特的能力,以协调与神经精神疾病病因相关的奖励相关行为的可解离方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature neuroscience
Nature neuroscience 医学-神经科学
CiteScore
38.60
自引率
1.20%
发文量
212
审稿时长
1 months
期刊介绍: Nature Neuroscience, a multidisciplinary journal, publishes papers of the utmost quality and significance across all realms of neuroscience. The editors welcome contributions spanning molecular, cellular, systems, and cognitive neuroscience, along with psychophysics, computational modeling, and nervous system disorders. While no area is off-limits, studies offering fundamental insights into nervous system function receive priority. The journal offers high visibility to both readers and authors, fostering interdisciplinary communication and accessibility to a broad audience. It maintains high standards of copy editing and production, rigorous peer review, rapid publication, and operates independently from academic societies and other vested interests. In addition to primary research, Nature Neuroscience features news and views, reviews, editorials, commentaries, perspectives, book reviews, and correspondence, aiming to serve as the voice of the global neuroscience community.
期刊最新文献
α-Synuclein deposition in the kidney may contribute to Parkinson’s disease Propagation of pathologic α-synuclein from kidney to brain may contribute to Parkinson’s disease Mapping the cellular etiology of schizophrenia and complex brain phenotypes Neural populations are dynamic but constrained Propagation of neuronal micronuclei regulates microglial characteristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1