Evaluation of active substances in gamboge and their mechanisms for the treatment of colorectal cancer by UPLC-MS/MS integrated with network pharmacology.
{"title":"Evaluation of active substances in gamboge and their mechanisms for the treatment of colorectal cancer by UPLC-MS/MS integrated with network pharmacology.","authors":"Guodong Shan, Jiajun Jiang, Liting Ji, Shiyan Li, Zejun Wang, Shaohui Yang, Qing Shen","doi":"10.1016/j.ab.2024.115747","DOIUrl":null,"url":null,"abstract":"<p><p>Gamboge exhibits anti-colorectal cancer (CRC) activity, however, its active compounds and the underlying mechanisms remain unclear. Herein, a liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method for determining gambogellic acid, β-morellic acid, isogambogenic acid, gambogenic acid, R-gambogic acid, S-gambogic acid, and hydroxygambogic acid in gamboge was established. The key parameters including ion transitions, voltages, LOD, and LOQ were determined, with LOD ranging from 0.8 to 2.0 ng mL<sup>-1</sup> and LOQ from 2.7 to 6.7 ng mL<sup>-1</sup>. The recovery rates were found to be between 95.6 % and 103.5 %. Furthermore, the active compounds were successfully determined, and molecular mechanisms of gamboge in treating CRC were explored. Network pharmacology revealed a \"compound-target-pathway\" network where the seven compounds could target key proteins, modulate PI3K-Akt and JAK-STAT pathways, and inhibit CRC development. Molecular docking validated SRC, SATA3, PIK3CA, among others, as potential targets for the active compounds in CRC intervention. In conclusion, this method significantly reduces analysis time and improves efficiency relative to existing approaches, making it highly suitable for the effective determination of multiple compounds in the quality control of gamboge materials.</p>","PeriodicalId":7830,"journal":{"name":"Analytical biochemistry","volume":" ","pages":"115747"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ab.2024.115747","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Gamboge exhibits anti-colorectal cancer (CRC) activity, however, its active compounds and the underlying mechanisms remain unclear. Herein, a liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method for determining gambogellic acid, β-morellic acid, isogambogenic acid, gambogenic acid, R-gambogic acid, S-gambogic acid, and hydroxygambogic acid in gamboge was established. The key parameters including ion transitions, voltages, LOD, and LOQ were determined, with LOD ranging from 0.8 to 2.0 ng mL-1 and LOQ from 2.7 to 6.7 ng mL-1. The recovery rates were found to be between 95.6 % and 103.5 %. Furthermore, the active compounds were successfully determined, and molecular mechanisms of gamboge in treating CRC were explored. Network pharmacology revealed a "compound-target-pathway" network where the seven compounds could target key proteins, modulate PI3K-Akt and JAK-STAT pathways, and inhibit CRC development. Molecular docking validated SRC, SATA3, PIK3CA, among others, as potential targets for the active compounds in CRC intervention. In conclusion, this method significantly reduces analysis time and improves efficiency relative to existing approaches, making it highly suitable for the effective determination of multiple compounds in the quality control of gamboge materials.
期刊介绍:
The journal''s title Analytical Biochemistry: Methods in the Biological Sciences declares its broad scope: methods for the basic biological sciences that include biochemistry, molecular genetics, cell biology, proteomics, immunology, bioinformatics and wherever the frontiers of research take the field.
The emphasis is on methods from the strictly analytical to the more preparative that would include novel approaches to protein purification as well as improvements in cell and organ culture. The actual techniques are equally inclusive ranging from aptamers to zymology.
The journal has been particularly active in:
-Analytical techniques for biological molecules-
Aptamer selection and utilization-
Biosensors-
Chromatography-
Cloning, sequencing and mutagenesis-
Electrochemical methods-
Electrophoresis-
Enzyme characterization methods-
Immunological approaches-
Mass spectrometry of proteins and nucleic acids-
Metabolomics-
Nano level techniques-
Optical spectroscopy in all its forms.
The journal is reluctant to include most drug and strictly clinical studies as there are more suitable publication platforms for these types of papers.