Evaluating the impact of neonicotinoids on aquatic non-target species: A comprehensive review.

Ahamadul Hoque Mandal, Auroshree Sadhu, Surajit Ghosh, Nimai Chandra Saha, Camilla Mossotto, Paolo Pastorino, Shubhajit Saha, Caterina Faggio
{"title":"Evaluating the impact of neonicotinoids on aquatic non-target species: A comprehensive review.","authors":"Ahamadul Hoque Mandal, Auroshree Sadhu, Surajit Ghosh, Nimai Chandra Saha, Camilla Mossotto, Paolo Pastorino, Shubhajit Saha, Caterina Faggio","doi":"10.1016/j.etap.2024.104606","DOIUrl":null,"url":null,"abstract":"<p><p>Neonicotinoid insecticides (NNIs) are the fastest-growing class in agricultural protection. They target nicotinic acetylcholine receptors (nAChR) in pests, stimulating the nervous system at low doses and causing paralysis and death at higher concentrations. NNIs are used in crop protection, seed treatment, forestry, agriculture, and flea control in domestic cattle. Effective at lower concentrations and offering long-term control, NNIs are favoured for their systemic activity. However, due to their water solubility, mobility, and moderate persistence, NNIs easily contaminate adjacent aquatic environments via runoff, leaching, or spray drift. While less toxic to vertebrates, their widespread use poses threats to aquatic and terrestrial organisms, causing neurotoxicity, nephrotoxicity, cytotoxicity, genotoxicity, immunotoxicity, hepatotoxicity, endocrine disruption, and reproductive malformations. This review synthesizes research to address knowledge gaps on the environmental impact of NNIs and proposes policies to mitigate their harmful effects on aquatic non-target species.</p>","PeriodicalId":93992,"journal":{"name":"Environmental toxicology and pharmacology","volume":" ","pages":"104606"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental toxicology and pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.etap.2024.104606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Neonicotinoid insecticides (NNIs) are the fastest-growing class in agricultural protection. They target nicotinic acetylcholine receptors (nAChR) in pests, stimulating the nervous system at low doses and causing paralysis and death at higher concentrations. NNIs are used in crop protection, seed treatment, forestry, agriculture, and flea control in domestic cattle. Effective at lower concentrations and offering long-term control, NNIs are favoured for their systemic activity. However, due to their water solubility, mobility, and moderate persistence, NNIs easily contaminate adjacent aquatic environments via runoff, leaching, or spray drift. While less toxic to vertebrates, their widespread use poses threats to aquatic and terrestrial organisms, causing neurotoxicity, nephrotoxicity, cytotoxicity, genotoxicity, immunotoxicity, hepatotoxicity, endocrine disruption, and reproductive malformations. This review synthesizes research to address knowledge gaps on the environmental impact of NNIs and proposes policies to mitigate their harmful effects on aquatic non-target species.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chronic carbendazim exposure disrupts behavioral responses and redox-regulatory mechanisms in non-target detritivore Nauphoeta cinerea nymphs. TOXICITY ASSESSMENT OF EFFLUENT FROM A POTATO-PROCESSING INDUSTRY IN Cyprinus carpio. ASSESSING AZITHROMYCIN'S ECOLOGICAL TOLL: UNVEILING MULTIFACETED IMPACTS ON POECILIA RETICULATA THROUGH BIOMARKER ANALYSIS. Polycyclic aromatic hydrocarbons in human granulosa cells: first in vivo presence and positive correlation with body mass index and in vitro ovarian cell steroidogenesis regulation. Mixture of neonicotinoid and fungicide affects foraging activity of honeybees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1