Increased epithelial migration capacity is a key step accompanying epithelial-mesenchymal transition (EMT). Our lab has described that ZC3H4 mediated EMT in silicosis. Here, we aimed to explore the mechanisms of ZC3H4 by which to stimulate epithelial cell migration.
Silicon dioxide (SiO2)-induced pulmonary fibrosis (PF) animal models were administered by intratracheal instillation in C57BL/6 J mice. Pathological analysis and 2D migration assay were established to uncover the pulmonary fibrotic lesions and epithelial cell migration, respectively. Inhibitors targeting ROCK/p-PYK2/p-MLC2 and CRISPR/Cas9 plasmids targeting ZC3H4 were administrated to explore the signaling pathways.
1) SiO2 upregulated epithelial migration in pulmonary fibrotic lesions. 2) ZC3H4 modulated SiO2-induced epithelial migration. 3) ZC3H4 governed epithelial migration through ROCK/p-PYK2/p-MLC2 signaling pathway.
ZC3H4 regulates epithelial migration through the ROCK/p-PYK2/p-MLC2 signaling pathway, providing the possibility that molecular drugs targeting ZC3H4-overexpression may exert effects on pulmonary fibrosis induced by silica.
This study focused on organophosphate malathion toxicity in Danube sturgeon (Acipenser gueldenstaedtii) and its negative effects in sub-lethal concentration. In this context, the LC50 value of fish exposed to five different concentrations and two different sub-lethal concentrations depending on the LC50 value were considered. Accordingly, LC50 of malathion for 96 h was 3.24 mg L-1. In leukocyte (WBC) and hemoglobin (HGB) such as hematological indicators, significant differences were observed in sub-lethal concentration (One-eighth of the LC50 =0.4 mg L-1). In addition, serious histological alterations were observed in the gill and liver tissues after both acute (96 h) and chronic periods (28 days). While epithelial lifting and hyperplasia were the most prominent lesions in the gill, intense vacuolization were observed in the liver. In addition, circulatory disturbances, regressive changes, and progressive changes in the gill and circulatory disturbances and inflammation in the liver were significantly higher for the chronic period. Finally, significantly higher DNA damage was detected in fish exposed malathion in the chronic period compared to the control group. In conclusion, the present study has proven that malathion has a hematological, histological and genotoxic effect on the endangered species A. gueldenstaedtii. Thus, the current study will motivate for residue studies on A. gueldenstaedtii and trigger conservation strategies for local governments.
Bisphenol S (BPS) is an incipient threat for reproductive health augmenting societal burden of infertility worldwide. In the present study, we investigated the mechanism of BPS induced testicular dysfunctions and protective actions of melatonin in mice. BPS (150 mg/kg BW) treatment reduced serum T3/T4, testosterone and elevated insulin levels along with adverse effect on thyroid and testicular histoarchitecture. Further, BPS treatment compromised sperm quality, reduced mRNA expression of steroidogenic (StAR/CYP11A1) markers, elevated oxidative load and disrupts metabolic status. However, melatonin (5 mg/kg BW) administration to BPS treated mice showed improved hormonal/histological parameters, enhanced thyroid hormone (TR-α/Dio-2)/melatonin (MT-1) receptor expressions. Further, melatonin treatment modulated the expression of testicular survival/redox (SIRT1/PGC-1α/FOXO-1, Nrf2/HO-1, p-JAK2/p-STAT3), proliferative (PCNA) and metabolic (IR/pAKT/GLUT-1) markers. Furthermore, melatonin treatment enhanced testicular antioxidant status and reduced caspase-3 expression. In conclusion, our results showed that BPS induces endocrine/oxidative and metabolic anomalies while melatonin improved male reproductive health.
Pesticides-related toxicities have long been studied. Data regarding the effects of combined exposure to environmentally relevant pesticides however remain lacking. The herbicide glyphosate and the fungicide mancozeb are extensively used in agriculture. Residues of both compounds are frequently found in food and water and therefore, environmental exposure to both pesticides is a possibility. Neurotoxicity of glyphosate, mancozeb and their combinations were investigated using mouse neuroblastoma cells. Cytotoxicity observed with the glyphosate and mancozeb combinations was higher than that observed when glyphosate was tested alone. Combinations of glyphosate followed by mancozeb increased copper, manganese, and zinc levels. Mixture of mancozeb + glyphosate increased manganese and zinc levels. Combination of mancozeb followed by glyphosate increased copper and zinc levels. Glutathione ratio was decreased as a result of combinations of glyphosate and mancozeb. The decrease in glutathione ratio was greater in the combination groups than in glyphosate alone.
Decades after most countries banned hexachlorocyclohexane, HCH isomers still pollute the environment. Many studies described HCH as a pro-diabetic factor; nevertheless, the effect of HCH isomers on pancreatic beta-cells remains unexplored. This study investigated the effects of a one-month exposure to α-HCH, β-HCH, and γ-HCH on protein expression in human (NES2Y) and rat (INS1E) pancreatic beta-cell lines. α-HCH and γ-HCH increased proinsulin and insulin levels in INS1E cells, while β-HCH showed the opposite trend. α-HCH altered the expression of PKA, ATF3, and PLIN2. β-HCH affected the expression of GLUT1, GLUT2, PKA, ATF3, p-eIF2α, ATP-CL, and PLIN2. γ-HCH altered the expression of PKA, ATF3, PLIN2, PLIN5, and IDH1. From the tested proteins, PKA, ATF3, and PLIN-2 were the most sensitive to HCH exposure and have the potential to be used as biomarkers.
The crescent presence of nanoplastics in the environment raises concerns regarding their potential impact on health. This study exposed human colon adenocarcinoma cells (HT29) and microglia cells (N9) to nanoplastics (25 nm, 50 nm, and 100 nm Polystyrene) to investigate their inflammatory responses, which are vital for body's defence. Although cytotoxicity remained generally low, HT29 cells exhibited a notable upregulation of p50 and p38 expression, concomitant with elevated TLR4 expression, in contrast with N9 cells that showed a less pronounced upregulation of these proteins. Additionally, nanoplastic exposure increased IL-1ß levels, partially attenuated by pre-exposure to TLR4 or p38 inhibitors. Intriguingly, N9 cells exposed to nanoplastics exhibited substantial increases in iNOS mRNA. This effect was entirely prevented by pre-exposure to TLR4 or p38 inhibitors, while TNF-α mRNA levels remained relatively stable. These findings underscore the potential of nanoplastics to activate inflammatory pathways, with response kinetics varying depending on the cell type.