Jing Liu , Yinyang Shen , Kaikai Duan , Xiangming He , Ruoyu Wang , Yeping Chen , Ruoyu Li , Jialu Sun , Xiaoyi Qiu , Tao Chen , Jie Wang , Hui Wang
{"title":"Novel biomimetic sandwich-structured electrospun cardiac patches with moderate adhesiveness and excellent electrical conductivity","authors":"Jing Liu , Yinyang Shen , Kaikai Duan , Xiangming He , Ruoyu Wang , Yeping Chen , Ruoyu Li , Jialu Sun , Xiaoyi Qiu , Tao Chen , Jie Wang , Hui Wang","doi":"10.1016/j.jmbbm.2024.106828","DOIUrl":null,"url":null,"abstract":"<div><div>Clinical cardiac patches exhibit unsatisfied biocompatibility, low adhesion, and inadequate compliance and suboptimal mechanical properties for cardiac disorders repair. To address these challenges, herein we have innovatively proposed a biomimetic nanofiber electrospun membrane with a sandwich structure strategy. The composite patch comprises a stretchable polyurethane (PU) as basic material, then infiltrated with biocompatible silk fibroin methacryloyl (Silk-MA) as the middle layer via electrospinning and finally covered with Bio-ILs (chemically modified biocompatible ionic liquids) to impart electrical conductivity. Results indicated that the incorporation of Bio-ILs significantly enhances the conductivity reaching 2877 mS/m; particularly due to the positive charges of Bio-ILs, the composite film exhibits mild adhesive properties, inducing minimal damage to the substrate tissue. Furthermore, the basic PU of bilayer nanofiber membrane increased the film's stretching strain to approximately 250%, the Silk-MA hydrogel coating changed the film from hydrophobic to hydrophilic, creating a favorable and biocompatible microenvironment. Finally, in vitro experiments on cardiomyocytes confirmed that the material exhibits low cytotoxicity and excellent biocompatibility. Overall, the biomimetic sandwich electrospun membrane could restore electrical conduction and synchronized contraction function, providing a promising strategy for the treatment of cardiac tissue engineering.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"163 ","pages":"Article 106828"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616124004600","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Clinical cardiac patches exhibit unsatisfied biocompatibility, low adhesion, and inadequate compliance and suboptimal mechanical properties for cardiac disorders repair. To address these challenges, herein we have innovatively proposed a biomimetic nanofiber electrospun membrane with a sandwich structure strategy. The composite patch comprises a stretchable polyurethane (PU) as basic material, then infiltrated with biocompatible silk fibroin methacryloyl (Silk-MA) as the middle layer via electrospinning and finally covered with Bio-ILs (chemically modified biocompatible ionic liquids) to impart electrical conductivity. Results indicated that the incorporation of Bio-ILs significantly enhances the conductivity reaching 2877 mS/m; particularly due to the positive charges of Bio-ILs, the composite film exhibits mild adhesive properties, inducing minimal damage to the substrate tissue. Furthermore, the basic PU of bilayer nanofiber membrane increased the film's stretching strain to approximately 250%, the Silk-MA hydrogel coating changed the film from hydrophobic to hydrophilic, creating a favorable and biocompatible microenvironment. Finally, in vitro experiments on cardiomyocytes confirmed that the material exhibits low cytotoxicity and excellent biocompatibility. Overall, the biomimetic sandwich electrospun membrane could restore electrical conduction and synchronized contraction function, providing a promising strategy for the treatment of cardiac tissue engineering.
期刊介绍:
The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials.
The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.