Model Complexity Reduction for ZKML Healthcare Applications: Privacy Protection and Inference Optimization for ZKML Applications-A Reference Implementation With Synthetic ICHOM Dataset.
{"title":"Model Complexity Reduction for ZKML Healthcare Applications: Privacy Protection and Inference Optimization for ZKML Applications-A Reference Implementation With Synthetic ICHOM Dataset.","authors":"Sathya Krishnasamy, Ilangovan Govindarajan","doi":"10.30953/bhty.v7.340","DOIUrl":null,"url":null,"abstract":"<p><p>Web 3.0 represents the next significant evolution of the internet that embodies the underlying decentralized network architectures, distributed ledgers, and advanced AI capabilities. Though the technologies are maturing rapidly, considerable barriers exist to high-scale adoption. The author discusses the barriers and the mitigations through specific technologies maturing to solve those issues in an earlier paper titled Moving Beyond POCs and Pilots, published in 2023 in Blockchain in Healthcare Today. These include privacy-preserving technologies, off-chain and on-chain design optimizations, and the multi-dimensional approach needed in planning and adopting these technologies. As an extension, this paper discusses one such enabler, zero knowledge machine learning (ZKML), which merges two streams of technology in unique ways to address problems in privacy and the cost of inference. Zero-knowledge proofs (ZKP) allow one party to prove the validity of a statement to another party without revealing any additional information about the statement itself. The ZKML combines the cryptographic principle of ZKP with machine learning (ML) techniques. It is still a maturing technology and needs baselines for applications in global healthcare. In this effort, the authors conceptualize the technical and operational feasibility of using ZKML and implement a reference healthcare implementation using the synthetic International Consortium for Health Outcomes Measurement (ICHOM) in the evaluation phase in a global healthcare setting for high-volume data collection, including patient-reported outcomes. Model complexity reduction is researched and reported for the ICHOM diabetes dataset to advance the usage of ML models in global standards of healthcare data collection in network decentralized architectures for increased data protection and efficiencies.</p>","PeriodicalId":72422,"journal":{"name":"Blockchain in healthcare today","volume":"7 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11624495/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blockchain in healthcare today","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30953/bhty.v7.340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Web 3.0 represents the next significant evolution of the internet that embodies the underlying decentralized network architectures, distributed ledgers, and advanced AI capabilities. Though the technologies are maturing rapidly, considerable barriers exist to high-scale adoption. The author discusses the barriers and the mitigations through specific technologies maturing to solve those issues in an earlier paper titled Moving Beyond POCs and Pilots, published in 2023 in Blockchain in Healthcare Today. These include privacy-preserving technologies, off-chain and on-chain design optimizations, and the multi-dimensional approach needed in planning and adopting these technologies. As an extension, this paper discusses one such enabler, zero knowledge machine learning (ZKML), which merges two streams of technology in unique ways to address problems in privacy and the cost of inference. Zero-knowledge proofs (ZKP) allow one party to prove the validity of a statement to another party without revealing any additional information about the statement itself. The ZKML combines the cryptographic principle of ZKP with machine learning (ML) techniques. It is still a maturing technology and needs baselines for applications in global healthcare. In this effort, the authors conceptualize the technical and operational feasibility of using ZKML and implement a reference healthcare implementation using the synthetic International Consortium for Health Outcomes Measurement (ICHOM) in the evaluation phase in a global healthcare setting for high-volume data collection, including patient-reported outcomes. Model complexity reduction is researched and reported for the ICHOM diabetes dataset to advance the usage of ML models in global standards of healthcare data collection in network decentralized architectures for increased data protection and efficiencies.