Emerging two dimensional MXene for corrosion protection in new energy systems: Design and mechanisms.

Baolong Gong, Xiaoqing Ma, Tiange Wang, Jiale Hou, Shuxian Ji, Qunjie Xu, Huaijie Cao
{"title":"Emerging two dimensional MXene for corrosion protection in new energy systems: Design and mechanisms.","authors":"Baolong Gong, Xiaoqing Ma, Tiange Wang, Jiale Hou, Shuxian Ji, Qunjie Xu, Huaijie Cao","doi":"10.1016/j.cis.2024.103373","DOIUrl":null,"url":null,"abstract":"<p><p>With the development of new and clean energy (offshore wind power, fuel cells, aqueous zinc ion batteries, lithium-ion batteries, etc.), the corrosion and security problems in special environments of the new energy system have attracted much attention. Corrosion protection on the metals applied in new energy system can reduce the economic loss, security risk, and energy consumption, as well as guarantee the efficiency of energy system. Traditional coatings face challenges in agglomeration of nano fillers, structural control, environmental issues, and poor conductivity, which limits the applications. With features in controllable surface chemistry and composition, rich surface terminations, better conductivity than graphene oxide, high aspect-ratio, strong impermeability, and low friction coefficient, the two-dimensional (2D) MXene presents potential for applications in corrosion protection in new energy systems. Despite progress has been made in the MXene for corrosion protection, there is still a lack of comprehensive review regarding the design and mechanisms of anti-corrosive MXene-based materials for corrosion protection in new energy system. In this review, a brief induction of MXene and the specially four corrosive environments (offshore wind power at deep sea, bipolar plates in PEMFC environments, zinc anode in AZIBs, and current collectors in Li-ion battery) are presented. Importantly, the design strategies and mechanisms of the MXene-based anti-corrosive coatings on metals used in the special environments are discussed in detail. Finally, the challenges and research trends in the MXene-based coatings for new energy systems are prospected. This review provides further understanding of corrosion in new energy and would expand the application prospects of MXene.</p>","PeriodicalId":93859,"journal":{"name":"Advances in colloid and interface science","volume":"336 ","pages":"103373"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in colloid and interface science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cis.2024.103373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the development of new and clean energy (offshore wind power, fuel cells, aqueous zinc ion batteries, lithium-ion batteries, etc.), the corrosion and security problems in special environments of the new energy system have attracted much attention. Corrosion protection on the metals applied in new energy system can reduce the economic loss, security risk, and energy consumption, as well as guarantee the efficiency of energy system. Traditional coatings face challenges in agglomeration of nano fillers, structural control, environmental issues, and poor conductivity, which limits the applications. With features in controllable surface chemistry and composition, rich surface terminations, better conductivity than graphene oxide, high aspect-ratio, strong impermeability, and low friction coefficient, the two-dimensional (2D) MXene presents potential for applications in corrosion protection in new energy systems. Despite progress has been made in the MXene for corrosion protection, there is still a lack of comprehensive review regarding the design and mechanisms of anti-corrosive MXene-based materials for corrosion protection in new energy system. In this review, a brief induction of MXene and the specially four corrosive environments (offshore wind power at deep sea, bipolar plates in PEMFC environments, zinc anode in AZIBs, and current collectors in Li-ion battery) are presented. Importantly, the design strategies and mechanisms of the MXene-based anti-corrosive coatings on metals used in the special environments are discussed in detail. Finally, the challenges and research trends in the MXene-based coatings for new energy systems are prospected. This review provides further understanding of corrosion in new energy and would expand the application prospects of MXene.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Surface modification of particles/nanoparticles to improve the stability of Pickering emulsions; a critical review. Pickering polymerized high internal phase emulsions: Fundamentals to advanced applications. Graphene-based nanomaterials applications for agricultural and food sector. Emerging two dimensional MXene for corrosion protection in new energy systems: Design and mechanisms. Recent advancements in the synthesis of anion exchange membranes and their potential applications in wastewater treatment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1