Catherine L. Searle, Stephanie O. Gutierrez, Ilinca I. Ciubotariu, Alana López-Cruz, Mark R. Christie
{"title":"Demographic rescue falters when pathogens are present","authors":"Catherine L. Searle, Stephanie O. Gutierrez, Ilinca I. Ciubotariu, Alana López-Cruz, Mark R. Christie","doi":"10.1002/ecy.4495","DOIUrl":null,"url":null,"abstract":"<p>As natural populations continue to decline globally, direct forms of intervention are increasingly necessary to prevent extinction. One type of intervention, known as demographic rescue, occurs when individuals are added directly to a population to increase abundance and ultimately prevent population extinction. However, the role of infectious disease in demographic rescue remains unknown. To examine the effects of pathogens on demographic rescue, we used a host–pathogen system with the aquatic crustacean <i>Daphnia dentifera</i> as the host and the fungus <i>Metschnikowia bicuspidata</i> as the pathogen. We constructed a randomized 3 × 2 factorial experiment with three rescue treatments (none, low, high) and two pathogen treatments (unexposed, exposed), where the pathogen was introduced via infected individuals during rescue events. We found that adding more individuals to demographically depressed populations increased abundance over the short term; highly supplemented populations initially had 62% more individuals than populations that had no introduced individuals. However, by the end of the experiment, populations that did not have any individuals introduced averaged 640% higher abundance than populations where infected individuals had been added. Thus, the introduction of infected individuals can result in worse demographic outcomes for populations than if no rescue is attempted.</p>","PeriodicalId":11484,"journal":{"name":"Ecology","volume":"106 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecy.4495","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecy.4495","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
As natural populations continue to decline globally, direct forms of intervention are increasingly necessary to prevent extinction. One type of intervention, known as demographic rescue, occurs when individuals are added directly to a population to increase abundance and ultimately prevent population extinction. However, the role of infectious disease in demographic rescue remains unknown. To examine the effects of pathogens on demographic rescue, we used a host–pathogen system with the aquatic crustacean Daphnia dentifera as the host and the fungus Metschnikowia bicuspidata as the pathogen. We constructed a randomized 3 × 2 factorial experiment with three rescue treatments (none, low, high) and two pathogen treatments (unexposed, exposed), where the pathogen was introduced via infected individuals during rescue events. We found that adding more individuals to demographically depressed populations increased abundance over the short term; highly supplemented populations initially had 62% more individuals than populations that had no introduced individuals. However, by the end of the experiment, populations that did not have any individuals introduced averaged 640% higher abundance than populations where infected individuals had been added. Thus, the introduction of infected individuals can result in worse demographic outcomes for populations than if no rescue is attempted.
期刊介绍:
Ecology publishes articles that report on the basic elements of ecological research. Emphasis is placed on concise, clear articles documenting important ecological phenomena. The journal publishes a broad array of research that includes a rapidly expanding envelope of subject matter, techniques, approaches, and concepts: paleoecology through present-day phenomena; evolutionary, population, physiological, community, and ecosystem ecology, as well as biogeochemistry; inclusive of descriptive, comparative, experimental, mathematical, statistical, and interdisciplinary approaches.