Stepwise molecular specification of excitatory synapse diversity onto cerebellar Purkinje cells

IF 21.2 1区 医学 Q1 NEUROSCIENCES Nature neuroscience Pub Date : 2024-12-10 DOI:10.1038/s41593-024-01826-w
Maëla A. Paul, Séverine M. Sigoillot, Léa Marti, Francisco J. Urra Quiroz, Marine Delagrange, Hiu W. Cheung, David C. Martinelli, Elie Oriol, Vincent Hakim, Philippe Mailly, Fekrije Selimi
{"title":"Stepwise molecular specification of excitatory synapse diversity onto cerebellar Purkinje cells","authors":"Maëla A. Paul, Séverine M. Sigoillot, Léa Marti, Francisco J. Urra Quiroz, Marine Delagrange, Hiu W. Cheung, David C. Martinelli, Elie Oriol, Vincent Hakim, Philippe Mailly, Fekrije Selimi","doi":"10.1038/s41593-024-01826-w","DOIUrl":null,"url":null,"abstract":"<p>Brain function relies on the generation of a large variety of morphologically and functionally diverse, but specific, neuronal synapses. Here we show that, in mice, the initial formation of synapses on cerebellar Purkinje cells involves a presynaptic protein—CBLN1, a member of the C1q protein family—that is secreted by all types of excitatory inputs. The molecular program then evolves only in one of the Purkinje cell inputs, the inferior olivary neurons, with the additional expression of the presynaptic secreted proteins C1QL1, CRTAC1 and LGI2. These molecules work in concert to specify the mature connectivity pattern on the Purkinje cell target. These results show that some inputs actively and gradually specify their synaptic molecular identity, while others rely on the ‘original molecular code’. Thus, the molecular specification of excitatory synapses, crucial for proper circuit function, is acquired in a stepwise manner during mouse postnatal development and obeys input-specific rules.</p>","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"28 1","pages":""},"PeriodicalIF":21.2000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41593-024-01826-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Brain function relies on the generation of a large variety of morphologically and functionally diverse, but specific, neuronal synapses. Here we show that, in mice, the initial formation of synapses on cerebellar Purkinje cells involves a presynaptic protein—CBLN1, a member of the C1q protein family—that is secreted by all types of excitatory inputs. The molecular program then evolves only in one of the Purkinje cell inputs, the inferior olivary neurons, with the additional expression of the presynaptic secreted proteins C1QL1, CRTAC1 and LGI2. These molecules work in concert to specify the mature connectivity pattern on the Purkinje cell target. These results show that some inputs actively and gradually specify their synaptic molecular identity, while others rely on the ‘original molecular code’. Thus, the molecular specification of excitatory synapses, crucial for proper circuit function, is acquired in a stepwise manner during mouse postnatal development and obeys input-specific rules.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
小脑浦肯野细胞兴奋性突触多样性的逐步分子表征
脑功能依赖于大量形态和功能多样但具有特异性的神经元突触的产生。本研究表明,在小鼠中,小脑浦肯野细胞突触的初始形成涉及一种突触前蛋白cbln1, C1q蛋白家族的一员,由所有类型的兴奋输入分泌。然后,分子程序只在浦肯野细胞输入的其中一个中进化,即下橄榄神经元,并伴有突触前分泌蛋白C1QL1、CRTAC1和LGI2的额外表达。这些分子协同工作,确定浦肯野细胞靶标上的成熟连接模式。这些结果表明,一些输入主动并逐渐指定其突触分子身份,而其他输入则依赖于“原始分子密码”。因此,兴奋性突触的分子特征,对于正确的电路功能至关重要,是在小鼠出生后发育过程中逐步获得的,并遵循输入特异性规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature neuroscience
Nature neuroscience 医学-神经科学
CiteScore
38.60
自引率
1.20%
发文量
212
审稿时长
1 months
期刊介绍: Nature Neuroscience, a multidisciplinary journal, publishes papers of the utmost quality and significance across all realms of neuroscience. The editors welcome contributions spanning molecular, cellular, systems, and cognitive neuroscience, along with psychophysics, computational modeling, and nervous system disorders. While no area is off-limits, studies offering fundamental insights into nervous system function receive priority. The journal offers high visibility to both readers and authors, fostering interdisciplinary communication and accessibility to a broad audience. It maintains high standards of copy editing and production, rigorous peer review, rapid publication, and operates independently from academic societies and other vested interests. In addition to primary research, Nature Neuroscience features news and views, reviews, editorials, commentaries, perspectives, book reviews, and correspondence, aiming to serve as the voice of the global neuroscience community.
期刊最新文献
α-Synuclein deposition in the kidney may contribute to Parkinson’s disease Propagation of pathologic α-synuclein from kidney to brain may contribute to Parkinson’s disease Mapping the cellular etiology of schizophrenia and complex brain phenotypes Neural populations are dynamic but constrained Propagation of neuronal micronuclei regulates microglial characteristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1