Discovery of 6-Fluoro-5-{4-[(5-fluoro-2-methyl-3-oxo-3,4-dihydroquinoxalin-6-yl)methyl]piperazin-1-yl}-N-methylpyridine-2-carboxamide (AZD9574): A CNS-Penetrant, PARP1-Selective Inhibitor

IF 6.8 1区 医学 Q1 CHEMISTRY, MEDICINAL Journal of Medicinal Chemistry Pub Date : 2024-12-10 DOI:10.1021/acs.jmedchem.4c01725
Jeffrey W. Johannes, Amber Y. S. Balazs, Derek Barratt, Michal Bista, Matthew D. Chuba, Sabina Cosulich, Susan E. Critchlow, Sébastien L. Degorce, Paolo Di Fruscia, Scott D. Edmondson, Kevin J. Embrey, Stephen Fawell, Avipsa Ghosh, Sonja J. Gill, Anders Gunnarsson, Sudhir M. Hande, Tom D. Heightman, Paul Hemsley, Giuditta Illuzzi, Jordan Lane, Carrie J.B. Larner, Elisabetta Leo, Lina Liu, Andrew Madin, Lisa McWilliams, Mark J. O’Connor, Jonathan P. Orme, Fiona Pachl, Martin J. Packer, Xiaohui Pei, Andy Pike, Marianne Schimpl, Hongyao She, Anna D. Staniszewska, Verity Talbot, Elizabeth Underwood, Jeffrey G. Varnes, Lin Xue, Tieguang Yao, Ke Zhang, Andrew X. Zhang, Xiaolan Zheng
{"title":"Discovery of 6-Fluoro-5-{4-[(5-fluoro-2-methyl-3-oxo-3,4-dihydroquinoxalin-6-yl)methyl]piperazin-1-yl}-N-methylpyridine-2-carboxamide (AZD9574): A CNS-Penetrant, PARP1-Selective Inhibitor","authors":"Jeffrey W. Johannes, Amber Y. S. Balazs, Derek Barratt, Michal Bista, Matthew D. Chuba, Sabina Cosulich, Susan E. Critchlow, Sébastien L. Degorce, Paolo Di Fruscia, Scott D. Edmondson, Kevin J. Embrey, Stephen Fawell, Avipsa Ghosh, Sonja J. Gill, Anders Gunnarsson, Sudhir M. Hande, Tom D. Heightman, Paul Hemsley, Giuditta Illuzzi, Jordan Lane, Carrie J.B. Larner, Elisabetta Leo, Lina Liu, Andrew Madin, Lisa McWilliams, Mark J. O’Connor, Jonathan P. Orme, Fiona Pachl, Martin J. Packer, Xiaohui Pei, Andy Pike, Marianne Schimpl, Hongyao She, Anna D. Staniszewska, Verity Talbot, Elizabeth Underwood, Jeffrey G. Varnes, Lin Xue, Tieguang Yao, Ke Zhang, Andrew X. Zhang, Xiaolan Zheng","doi":"10.1021/acs.jmedchem.4c01725","DOIUrl":null,"url":null,"abstract":"PARP inhibitors have attracted considerable interest in drug discovery due to the clinical success of first-generation agents such as olaparib, niraparib, rucaparib, and talazoparib. Their success lies in their ability to trap PARP to DNA; however, first-generation PARP inhibitors were not strictly optimized for trapping nor for selectivity among the PARP enzyme family. Previously we described the discovery of the second-generation PARP inhibitor AZD5305, a selective PARP1-DNA trapper. AZD5305 maintained the antitumor efficacy of first-generation PARP inhibitors while exhibiting lower hematological toxicity. Recently, there has been interest in central nervous system (CNS)-penetrant PARP inhibitors for CNS malignancies and other neurological conditions; however, AZD5305 is not CNS penetrant. Herein we describe the discovery and optimization of a series of CNS-penetrant, PARP1-selective inhibitors and PARP1-DNA trappers, culminating in the discovery of AZD9574, a compound that maintains the PARP1 selectivity of AZD5305 with improved permeability, reduced efflux, and increased CNS penetration.","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"237 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c01725","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

PARP inhibitors have attracted considerable interest in drug discovery due to the clinical success of first-generation agents such as olaparib, niraparib, rucaparib, and talazoparib. Their success lies in their ability to trap PARP to DNA; however, first-generation PARP inhibitors were not strictly optimized for trapping nor for selectivity among the PARP enzyme family. Previously we described the discovery of the second-generation PARP inhibitor AZD5305, a selective PARP1-DNA trapper. AZD5305 maintained the antitumor efficacy of first-generation PARP inhibitors while exhibiting lower hematological toxicity. Recently, there has been interest in central nervous system (CNS)-penetrant PARP inhibitors for CNS malignancies and other neurological conditions; however, AZD5305 is not CNS penetrant. Herein we describe the discovery and optimization of a series of CNS-penetrant, PARP1-selective inhibitors and PARP1-DNA trappers, culminating in the discovery of AZD9574, a compound that maintains the PARP1 selectivity of AZD5305 with improved permeability, reduced efflux, and increased CNS penetration.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Medicinal Chemistry
Journal of Medicinal Chemistry 医学-医药化学
CiteScore
4.00
自引率
11.00%
发文量
804
审稿时长
1.9 months
期刊介绍: The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents. The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.
期刊最新文献
Minimalist Natural ORPphilin Macarangin B Delineates OSBP Biological Function MoA Studies of the TEAD P-Site Binding Ligand MSC-4106 and Its Optimization to TEAD1-Selective Amide M3686 Identification of Novel Organo-Se BTSA-Based Derivatives as Potent, Reversible, and Selective PPARγ Covalent Modulators for Antidiabetic Drug Discovery F-CPI: A Multimodal Deep Learning Approach for Predicting Compound Bioactivity Changes Induced by Fluorine Substitution Fluorinated Coumarin Derivatives as Selective PET Tracer for MAO-B Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1