Regulated Li+ Solvation via Competitive Coordination Mechanism of Organic Cations for High Voltage and Fast Charging Lithium Metal Batteries

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-12-10 DOI:10.1002/anie.202416092
Jiangtao Yu, Xinyu Ma, Dr. Xiuyang Zou, Dr. Yin Hu, Mingchen Yang, Prof. Yuanli Cai, Prof. Feng Yan
{"title":"Regulated Li+ Solvation via Competitive Coordination Mechanism of Organic Cations for High Voltage and Fast Charging Lithium Metal Batteries","authors":"Jiangtao Yu,&nbsp;Xinyu Ma,&nbsp;Dr. Xiuyang Zou,&nbsp;Dr. Yin Hu,&nbsp;Mingchen Yang,&nbsp;Prof. Yuanli Cai,&nbsp;Prof. Feng Yan","doi":"10.1002/anie.202416092","DOIUrl":null,"url":null,"abstract":"<p>Li<sup>+</sup> solvation exerted a decisive effect on electrolyte physicochemical properties. Suitable tuning for Li<sup>+</sup> solvation enabled batteries to achieve unexpected performance. Here, we introduced inert organic cations to compete with Li<sup>+</sup> for combining electrolyte molecules to modulate Li<sup>+</sup> coordination in the electrolyte. The relevance between the number of cationic sites in organic cations and the competitive solvation ability was explored. The organic cations with multiple cationic sites attracted solvent molecules and anions away from Li<sup>+</sup> to form new solvated shell, improving the Li<sup>+</sup> transport kinetics and desolvation process in electrolyte while enhancing electrolyte oxidation tolerance. Moreover, electrostatic shielding provided by organic cations and anion-derived robust SEI promoted uniform and rapid Li<sup>+</sup> deposition on Li electrodes. With the positive effect of organic cations, Li||LiCoO<sub>2</sub> (LCO) batteries showed high specific capacity (136.46 mAh g<sup>−1</sup>) at high charge/discharge rate (10 C). Furthermore, Li||LCO batteries exhibited good capacity retention (70 % after 500 cycles) at 4.6 V charge cut-off voltage. This work provides fresh insights for the optimization of electrolytes and battery performance.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 5","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202416092","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Li+ solvation exerted a decisive effect on electrolyte physicochemical properties. Suitable tuning for Li+ solvation enabled batteries to achieve unexpected performance. Here, we introduced inert organic cations to compete with Li+ for combining electrolyte molecules to modulate Li+ coordination in the electrolyte. The relevance between the number of cationic sites in organic cations and the competitive solvation ability was explored. The organic cations with multiple cationic sites attracted solvent molecules and anions away from Li+ to form new solvated shell, improving the Li+ transport kinetics and desolvation process in electrolyte while enhancing electrolyte oxidation tolerance. Moreover, electrostatic shielding provided by organic cations and anion-derived robust SEI promoted uniform and rapid Li+ deposition on Li electrodes. With the positive effect of organic cations, Li||LiCoO2 (LCO) batteries showed high specific capacity (136.46 mAh g−1) at high charge/discharge rate (10 C). Furthermore, Li||LCO batteries exhibited good capacity retention (70 % after 500 cycles) at 4.6 V charge cut-off voltage. This work provides fresh insights for the optimization of electrolytes and battery performance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高压快充锂金属电池中有机阳离子竞争配位机制对Li+溶剂化的调控
Li+溶剂化对电解质的理化性质有决定性的影响。合适的Li+溶剂化调整使电池达到意想不到的性能。在这里,我们引入了惰性有机阳离子来与Li+竞争结合电解质分子来调节电解质中的Li+配位。探讨了有机阳离子中阳离子位数与竞争性溶剂化能力之间的关系。具有多个阳离子位的有机阳离子吸引溶剂分子和阴离子远离Li+形成新的溶剂化壳,改善了Li+在电解质中的迁移动力学和脱溶过程,同时增强了电解质的抗氧化能力。此外,有机阳离子和阴离子衍生的强大SEI提供的静电屏蔽促进了Li+在Li电极上均匀快速的沉积。在有机阳离子的积极作用下,Li||LiCoO2 (LCO)电池在高充放电倍率(10℃)下具有较高的比容量(136.46 mAh g-1),并且Li||LCO电池在4.6 V充电截止电压下具有良好的容量保持率(500次循环后70%)。这项工作为电解质和电池性能的优化提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
La3ZrGa5O14: Band-inversion Strategy in Topology-Protected Octahedron for Large Nonlinear Response and Wide Bandgap High- Density Post-Perovskite for Ultra-Sensitive Hard X-ray Detection Synergistic Catalysts for Lithium-Sulfur Batteries: Ni Single Atom and MoC Nanoclusters Composites Engineered Polymeric Microspheres with Synergistic Hydrogen-Bonding Nanotraps and Multi-site adsorption for Ultrafast Herbicide Decontamination Molybdenum-catalyzed ammonia synthesis by using zero-valent metal powder with alcohols or water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1