{"title":"Regulated Li+ Solvation via Competitive Coordination Mechanism of Organic Cations for High Voltage and Fast Charging Lithium Metal Batteries","authors":"Jiangtao Yu, Xinyu Ma, Xiuyang Zou, Yin Hu, Mingchen Yang, Yuanli Cai, Feng Yan","doi":"10.1002/anie.202416092","DOIUrl":null,"url":null,"abstract":"Li+ solvation exerted a decisive effect on electrolyte physicochemical properties. Suitable tuning for Li+ solvation enabled batteries to achieve unexpected performance. Here, we introduced inert organic cations to compete with Li+ for combining electrolyte molecules to modulate Li+ coordination in the electrolyte. The relevance between the number of cationic sites in organic cations and the competitive solvation ability was explored. The organic cations with multiple cationic sites attracted solvent molecules and anions away from Li+ to form new solvated shell, improving the Li+ transport kinetics and desolvation process in electrolyte while enhancing electrolyte oxidation tolerance. Moreover, electrostatic shielding provided by organic cations and anion-derived robust SEI promoted uniform and rapid Li+ deposition on Li electrodes. With the positive effect of organic cations, Li||LiCoO2 (LCO) batteries showed high specific capacity (136.46 mAh g-1) at high charge/discharge rate (10 C). Furthermore, Li||LCO batteries exhibited good capacity retention (70% after 500 cycles) at 4.6 V charge cut-off voltage. This work provides fresh insights for the optimization of electrolytes and battery performance.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"20 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202416092","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Li+ solvation exerted a decisive effect on electrolyte physicochemical properties. Suitable tuning for Li+ solvation enabled batteries to achieve unexpected performance. Here, we introduced inert organic cations to compete with Li+ for combining electrolyte molecules to modulate Li+ coordination in the electrolyte. The relevance between the number of cationic sites in organic cations and the competitive solvation ability was explored. The organic cations with multiple cationic sites attracted solvent molecules and anions away from Li+ to form new solvated shell, improving the Li+ transport kinetics and desolvation process in electrolyte while enhancing electrolyte oxidation tolerance. Moreover, electrostatic shielding provided by organic cations and anion-derived robust SEI promoted uniform and rapid Li+ deposition on Li electrodes. With the positive effect of organic cations, Li||LiCoO2 (LCO) batteries showed high specific capacity (136.46 mAh g-1) at high charge/discharge rate (10 C). Furthermore, Li||LCO batteries exhibited good capacity retention (70% after 500 cycles) at 4.6 V charge cut-off voltage. This work provides fresh insights for the optimization of electrolytes and battery performance.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.