Shuping Wen, Zhilin Chen, Zhilin Tian, Liya Zheng, Bin Li
{"title":"Rare earth stannates: A new high-performance wave-transparent material investigated through theoretical and experimental approaches","authors":"Shuping Wen, Zhilin Chen, Zhilin Tian, Liya Zheng, Bin Li","doi":"10.1016/j.mtphys.2024.101622","DOIUrl":null,"url":null,"abstract":"<div><div>Wave-transparent materials are widely used as integrated structural-functional materials in various aircraft communication systems. However, the lack of high-performance wave-transparent materials has impeded the advancement of hypersonic aircraft. Consequently, the search for novel high-performance wave-transparent materials has become a critical challenge. This study investigates the dielectric, mechanical, and thermal properties of RE<sub>2</sub>Sn<sub>2</sub>O<sub>7</sub> (RE = La, Nd, Sm, Eu, Gd, Tb, Dy, Er, and Lu) using both theoretical predictions and experimental measurements to evaluate their suitability as wave-transparent materials. Preliminary first-principles calculations predict exceptional mechanical properties for RE₂Sn₂O₇. These predictions are confirmed experimentally, with synthesized RE₂Sn₂O₇ samples exhibiting Young's modulus exceeding 200 GPa and hardness greater than 10 GPa. Additionally, they also present low dielectric constants (∼8) and dielectric loss tangent values below 0.01 with the dielectric constant unaffected by RE species, while the dielectric loss tangent value decreases as the RE³⁺ ionic radius decreases. Their thermal expansion coefficients range between of 8 × 10<sup>−6</sup> K<sup>−1</sup> and 10 × 10<sup>−6</sup> K<sup>−1</sup>, while thermal conductivities can be as low as 2 W m⁻<sup>1</sup> K⁻<sup>1</sup>. The relationship between RE³⁺ ionic radius and intrinsic properties is elucidated, revealing that a smaller ionic radius reduces dielectric loss tangent value while enhancing Young's modulus, hardness, and thermal expansion coefficient. These results provide valuable theoretical guidance for design of high-performance wave-transparent materials.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"50 ","pages":"Article 101622"},"PeriodicalIF":10.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529324002980","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Wave-transparent materials are widely used as integrated structural-functional materials in various aircraft communication systems. However, the lack of high-performance wave-transparent materials has impeded the advancement of hypersonic aircraft. Consequently, the search for novel high-performance wave-transparent materials has become a critical challenge. This study investigates the dielectric, mechanical, and thermal properties of RE2Sn2O7 (RE = La, Nd, Sm, Eu, Gd, Tb, Dy, Er, and Lu) using both theoretical predictions and experimental measurements to evaluate their suitability as wave-transparent materials. Preliminary first-principles calculations predict exceptional mechanical properties for RE₂Sn₂O₇. These predictions are confirmed experimentally, with synthesized RE₂Sn₂O₇ samples exhibiting Young's modulus exceeding 200 GPa and hardness greater than 10 GPa. Additionally, they also present low dielectric constants (∼8) and dielectric loss tangent values below 0.01 with the dielectric constant unaffected by RE species, while the dielectric loss tangent value decreases as the RE³⁺ ionic radius decreases. Their thermal expansion coefficients range between of 8 × 10−6 K−1 and 10 × 10−6 K−1, while thermal conductivities can be as low as 2 W m⁻1 K⁻1. The relationship between RE³⁺ ionic radius and intrinsic properties is elucidated, revealing that a smaller ionic radius reduces dielectric loss tangent value while enhancing Young's modulus, hardness, and thermal expansion coefficient. These results provide valuable theoretical guidance for design of high-performance wave-transparent materials.
期刊介绍:
Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.