A spatiotemporal autoregressive neural network interpolation method for discrete environmental factors

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Environmental Modelling & Software Pub Date : 2025-02-01 DOI:10.1016/j.envsoft.2024.106289
Jin Qi , Wenting Lv , Junxia Zhu , Minyu Wang , Zhe Zhang , Guangyuan Zhang , Sensen Wu , Zhenhong Du
{"title":"A spatiotemporal autoregressive neural network interpolation method for discrete environmental factors","authors":"Jin Qi ,&nbsp;Wenting Lv ,&nbsp;Junxia Zhu ,&nbsp;Minyu Wang ,&nbsp;Zhe Zhang ,&nbsp;Guangyuan Zhang ,&nbsp;Sensen Wu ,&nbsp;Zhenhong Du","doi":"10.1016/j.envsoft.2024.106289","DOIUrl":null,"url":null,"abstract":"<div><div>The spatiotemporal interpolation model is necessary for generating continuous distributions for spatiotemporally discrete sampling points. However, there remain challenges in spatiotemporal interpolation due to the complex spatiotemporal effect and the imprecise kernel functions. Here, we proposed a spatiotemporal autoregressive neural network interpolation model (STARNN) that incorporates adaptive spatiotemporal distance quantification and supervised learning. The 10-fold cross-validation modelling on sea surface temperature and coastal nutrients demonstrated that the STARNN model performs better than baseline models and can well depict reasonable spatiotemporal distributions for environmental factors. By proposing two stacked neural networks, the STARNN model can accurately integrate spatial and temporal distances and avoids subjective selection of the kernel function. This study developed a novel interpolation model for processing discrete spatiotemporal points by following the data-driven paradigm, which can offer decision support for simulating the spread of sea temperature anomalies and optimizing the distribution of water quality measurement stations.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"185 ","pages":"Article 106289"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815224003505","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The spatiotemporal interpolation model is necessary for generating continuous distributions for spatiotemporally discrete sampling points. However, there remain challenges in spatiotemporal interpolation due to the complex spatiotemporal effect and the imprecise kernel functions. Here, we proposed a spatiotemporal autoregressive neural network interpolation model (STARNN) that incorporates adaptive spatiotemporal distance quantification and supervised learning. The 10-fold cross-validation modelling on sea surface temperature and coastal nutrients demonstrated that the STARNN model performs better than baseline models and can well depict reasonable spatiotemporal distributions for environmental factors. By proposing two stacked neural networks, the STARNN model can accurately integrate spatial and temporal distances and avoids subjective selection of the kernel function. This study developed a novel interpolation model for processing discrete spatiotemporal points by following the data-driven paradigm, which can offer decision support for simulating the spread of sea temperature anomalies and optimizing the distribution of water quality measurement stations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
离散环境因素的时空自回归神经网络插值法
时空插值模型是产生时空离散采样点连续分布的必要条件。然而,由于时空效应的复杂性和核函数的不精确性,在时空插值方面仍然存在挑战。本文提出了一种结合自适应时空距离量化和监督学习的时空自回归神经网络插值模型(STARNN)。对海表温度和海岸营养物的10倍交叉验证模型表明,STARNN模型优于基线模型,能较好地描述环境因子的合理时空分布。通过提出两个堆叠神经网络,STARNN模型可以准确地整合时空距离,避免了核函数的主观选择。本研究建立了一种基于数据驱动的离散时空点插值模型,为模拟海温异常扩散和优化水质测量站分布提供决策支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
期刊最新文献
Hybrid cellular automata-based air pollution model for traffic scenario microsimulations PSLSA v2.0: An automatic Python package integrating machine learning models for regional landslide susceptibility assessment Spatiotemporal PM2.5 forecasting via dynamic geographical Graph Neural Network ExMAD (Expert-based Multitemporal AI Detector): An open-source methodological framework for remote and field landslide inventory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1