{"title":"ExMAD (Expert-based Multitemporal AI Detector): An open-source methodological framework for remote and field landslide inventory","authors":"Michele Licata, Stefano Faga , Giandomenico Fubelli","doi":"10.1016/j.envsoft.2025.106363","DOIUrl":null,"url":null,"abstract":"<div><div>Landslides threaten lives and infrastructure, making accurate inventories crucial for risk management. This study combines expert methods with machine learning to automate and validate landslide detection and timing using Sentinel-2 satellite imagery. We developed ExMAD (Expert-based Multi-temporal AI Detector), an open-source methodological framework (<span><span>https://github.com/NewGeoProjects/ExMAD</span><svg><path></path></svg></span>) to integrate artificial intelligence with human expertise to detect occurrence timing of a targeted landslide. A U-Net neural network was chosen to effectively test ExMAD in landslide detection over Sentinel-2 worldwide multitemporal satellite imagery sequences, and the model was tested through five evaluations. ExMAD was able to effectively extract timing of target landslides on Sentinel-2 images and was able to correctly detect the presence/absence of landslide, proving the suitability of AI systems in landslide temporal mapping task.</div><div>This research proves the potential of hybrid AI-human approaches for landslide risk assessment, integrate human expertise with machine learning offers promising advancements for remote and field mapping of landslide. Furthermore, the ExMAD methodology adheres to the European Union's Artificial Intelligence Act, stressing human oversight in high-risk AI applications to enhance trust, control, and efficiency in landslide inventory creation and risk management.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"186 ","pages":"Article 106363"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225000477","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Landslides threaten lives and infrastructure, making accurate inventories crucial for risk management. This study combines expert methods with machine learning to automate and validate landslide detection and timing using Sentinel-2 satellite imagery. We developed ExMAD (Expert-based Multi-temporal AI Detector), an open-source methodological framework (https://github.com/NewGeoProjects/ExMAD) to integrate artificial intelligence with human expertise to detect occurrence timing of a targeted landslide. A U-Net neural network was chosen to effectively test ExMAD in landslide detection over Sentinel-2 worldwide multitemporal satellite imagery sequences, and the model was tested through five evaluations. ExMAD was able to effectively extract timing of target landslides on Sentinel-2 images and was able to correctly detect the presence/absence of landslide, proving the suitability of AI systems in landslide temporal mapping task.
This research proves the potential of hybrid AI-human approaches for landslide risk assessment, integrate human expertise with machine learning offers promising advancements for remote and field mapping of landslide. Furthermore, the ExMAD methodology adheres to the European Union's Artificial Intelligence Act, stressing human oversight in high-risk AI applications to enhance trust, control, and efficiency in landslide inventory creation and risk management.
期刊介绍:
Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.