Thermoelectric power generation in concrete: A study on influential material and structural factors

IF 7.1 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Energy and Buildings Pub Date : 2025-02-01 DOI:10.1016/j.enbuild.2024.115159
Yong Luo, Hai Liu
{"title":"Thermoelectric power generation in concrete: A study on influential material and structural factors","authors":"Yong Luo,&nbsp;Hai Liu","doi":"10.1016/j.enbuild.2024.115159","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents an innovative design for a concrete-based energy harvesting system, focusing on ordinary concrete, steel fiber concrete, and bamboo fiber concrete to identify the most effective material for power generation and efficiency improvement. The temperature transfer characteristics and output voltage of each concrete type are examined in detail. Simulation analyses assess how ambient temperature, wind speed, and the embedding depth of conductive aluminum plates affect the system’s temperature field and output voltage. Field tests measuring the output voltage of steel fiber concrete confirm the model’s accuracy. Results show that steel fiber concrete achieves the highest output voltage, followed by ordinary and bamboo fiber concrete. Among influencing factors, ambient temperature has the most significant impact on output voltage, ranked as ambient temperature &gt; wind speed &gt; aluminum plate embedding depth. Over time, the influence of embedding depth on output voltage lessens. When the temperature difference across the thermoelectric module reaches 54.6 °C, the system generates an output voltage of 1.09 V, meeting low-power generation requirements. This research aims to reduce pavement temperatures, preventing damage to pavement structures from high temperatures, while harnessing the temperature difference between concrete pavement and air to generate clean energy. This approach meets the power demands of road systems and lays a solid foundation for integrating energy generation with construction.</div></div>","PeriodicalId":11641,"journal":{"name":"Energy and Buildings","volume":"328 ","pages":"Article 115159"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Buildings","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378778824012751","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents an innovative design for a concrete-based energy harvesting system, focusing on ordinary concrete, steel fiber concrete, and bamboo fiber concrete to identify the most effective material for power generation and efficiency improvement. The temperature transfer characteristics and output voltage of each concrete type are examined in detail. Simulation analyses assess how ambient temperature, wind speed, and the embedding depth of conductive aluminum plates affect the system’s temperature field and output voltage. Field tests measuring the output voltage of steel fiber concrete confirm the model’s accuracy. Results show that steel fiber concrete achieves the highest output voltage, followed by ordinary and bamboo fiber concrete. Among influencing factors, ambient temperature has the most significant impact on output voltage, ranked as ambient temperature > wind speed > aluminum plate embedding depth. Over time, the influence of embedding depth on output voltage lessens. When the temperature difference across the thermoelectric module reaches 54.6 °C, the system generates an output voltage of 1.09 V, meeting low-power generation requirements. This research aims to reduce pavement temperatures, preventing damage to pavement structures from high temperatures, while harnessing the temperature difference between concrete pavement and air to generate clean energy. This approach meets the power demands of road systems and lays a solid foundation for integrating energy generation with construction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混凝土热电发电:影响材料和结构因素的研究
本研究提出了一种基于混凝土的能量收集系统的创新设计,重点关注普通混凝土,钢纤维混凝土和竹纤维混凝土,以确定最有效的发电和效率提高材料。详细分析了各类型混凝土的温度传递特性和输出电压。仿真分析评估了环境温度、风速和导电铝板的嵌入深度对系统温度场和输出电压的影响。对钢纤维混凝土的输出电压进行了现场测试,验证了模型的准确性。结果表明,钢纤维混凝土的输出电压最高,普通纤维混凝土次之,竹纤维混凝土次之。在影响因素中,环境温度对输出电压的影响最为显著,排名为环境温度>;风速>;铝板埋深。随着时间的推移,埋设深度对输出电压的影响逐渐减小。当热电模块间温差达到54.6℃时,系统输出电压为1.09 V,满足小功率发电要求。这项研究旨在降低路面温度,防止高温对路面结构的破坏,同时利用混凝土路面和空气之间的温差来产生清洁能源。该方法满足了道路系统的电力需求,为实现产建一体化奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy and Buildings
Energy and Buildings 工程技术-工程:土木
CiteScore
12.70
自引率
11.90%
发文量
863
审稿时长
38 days
期刊介绍: An international journal devoted to investigations of energy use and efficiency in buildings Energy and Buildings is an international journal publishing articles with explicit links to energy use in buildings. The aim is to present new research results, and new proven practice aimed at reducing the energy needs of a building and improving indoor environment quality.
期刊最新文献
Comparative study of winter indoor thermal comfort in three typical dwelling types in an ecologically sensitive region Conditional autoencoder for HVAC duct layout generation Impact of stochastic modelling of windows operation on residential building energy simulation and rating Achieving ultra-low humidity in industry buildings: advanced desiccant wheel system with flexible energy-use strategy Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1