Ridge-Loaded S-Band MILO Using Drift Tube and Dual Extraction Cavity

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS IEEE Transactions on Plasma Science Pub Date : 2024-11-13 DOI:10.1109/TPS.2024.3481153
Bilawal Ali;Yubin Gong;Shaomeng Wang;Muhammad Khawar Nadeem;Jibran Latif;Atif Jameel;Yang Dong;Zhanliang Wang
{"title":"Ridge-Loaded S-Band MILO Using Drift Tube and Dual Extraction Cavity","authors":"Bilawal Ali;Yubin Gong;Shaomeng Wang;Muhammad Khawar Nadeem;Jibran Latif;Atif Jameel;Yang Dong;Zhanliang Wang","doi":"10.1109/TPS.2024.3481153","DOIUrl":null,"url":null,"abstract":"A magnetically insulated line oscillator (MILO) is a unique high-power microwave (HPM) device distinct by its inherent ability to generate a self-insulating magnetic field. In this article, an S-band ridge-loaded MILO is studied. The current design incorporates a drift section in a region of slow wave structure (SWS), resulting in a reduction of the axial velocity (\n<inline-formula> <tex-math>$v_{z}$ </tex-math></inline-formula>\n) spread of the modulated beam. Another, a dual extraction cavity is designed in the extraction region. So, the axial electric field is enhanced, and beam-wave interaction is lengthened in this region; consequently, efficiency is increased. Dispersion characteristic is obtained in eigenmode analysis. In 3-D particle-in-cell simulation, the presented MILO generates a 4.5-GW average output power at 2.56-GHz frequency with an application of 500-kV voltage and a current of 42 kA. The average efficiency is elevated to 21.4%, while it is only 15.7% for conventional ridge-loaded MILO for the same input parameters, so the net increase in efficiency is 36%.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"52 9","pages":"4553-4561"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10752905/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

A magnetically insulated line oscillator (MILO) is a unique high-power microwave (HPM) device distinct by its inherent ability to generate a self-insulating magnetic field. In this article, an S-band ridge-loaded MILO is studied. The current design incorporates a drift section in a region of slow wave structure (SWS), resulting in a reduction of the axial velocity ( $v_{z}$ ) spread of the modulated beam. Another, a dual extraction cavity is designed in the extraction region. So, the axial electric field is enhanced, and beam-wave interaction is lengthened in this region; consequently, efficiency is increased. Dispersion characteristic is obtained in eigenmode analysis. In 3-D particle-in-cell simulation, the presented MILO generates a 4.5-GW average output power at 2.56-GHz frequency with an application of 500-kV voltage and a current of 42 kA. The average efficiency is elevated to 21.4%, while it is only 15.7% for conventional ridge-loaded MILO for the same input parameters, so the net increase in efficiency is 36%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用漂移管和双提取腔的脊载 S 波段 MILO
磁绝缘线振荡器(MILO)是一种独特的高功率微波(HPM)器件,其固有的产生自绝缘磁场的能力与众不同。本文研究了一种s波段脊载多路多路输出电路。目前的设计在慢波结构(SWS)区域加入了漂移段,从而降低了调制光束的轴向速度($v_{z}$)传播。另一种是在提取区域设计双提取腔。因此,轴向电场增强,该区域的波束相互作用延长;因此,效率提高了。在本征模分析中得到色散特性。在三维细胞内粒子模拟中,在2.56 ghz频率下,在500 kv电压和42 kA电流的作用下,MILO产生4.5 gw的平均输出功率。在相同的输入参数下,平均效率提高到21.4%,而传统脊载式MILO的平均效率仅为15.7%,因此净效率提高了36%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Plasma Science
IEEE Transactions on Plasma Science 物理-物理:流体与等离子体
CiteScore
3.00
自引率
20.00%
发文量
538
审稿时长
3.8 months
期刊介绍: The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.
期刊最新文献
Table of Contents IEEE Transactions on Plasma Science Information for Authors IEEE Transactions on Plasma Science Publication Information Announcing the Twentieth Special Issue of IEEE Transactions on Plasma Science on High-Power Microwave Generation, June 2026 Blank Page
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1