Curcumin mediates glutathione depletion via metal–organic framework nanocarriers to enhance cisplatin chemosensitivity on esophageal cancer

IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanoscale Research Letters Pub Date : 2024-12-11 DOI:10.1186/s11671-024-04168-5
Yunhao Sun, Kaijun Ying, Jian Sun, Limin Qiu, Yao Wang, Mingming Ji, Lulu Zhou, Jinjin Chen
{"title":"Curcumin mediates glutathione depletion via metal–organic framework nanocarriers to enhance cisplatin chemosensitivity on esophageal cancer","authors":"Yunhao Sun,&nbsp;Kaijun Ying,&nbsp;Jian Sun,&nbsp;Limin Qiu,&nbsp;Yao Wang,&nbsp;Mingming Ji,&nbsp;Lulu Zhou,&nbsp;Jinjin Chen","doi":"10.1186/s11671-024-04168-5","DOIUrl":null,"url":null,"abstract":"<div><p>Cisplatin (CDDP) is the primary drug used in the initial treatment of esophageal cancer (EC). However, its side effects and resistance can limit its effectiveness in clinical therapy. Curcumin (Cur)-mediated glutathione (GSH) depletion can reverse resistance, enhance the chemosensitivity of CDDP, and further improve the efficacy of platinum-containing chemotherapy in the treatment of esophageal cancer. However, it is also faced with problems of poor water solubility and low bioavailability in vivo, which severely hinders cancer treatments. In order to address these issues, we developed a novel nanotherapeutic system called CDCZA, combining Cur/CDDP/Cu/ZIF8@Au to enhance chemotherapy through GSH depletion and chemodynamic therapy through self-produced H<sub>2</sub>O<sub>2</sub>. Cu and CDDP were precisely co-loaded into Cu/ZIF8 nanoparticles using a one-pot method, then ultra-small gold nanoparticles mimicking glucose oxidase (Au nanoparticles) were embedded in the outer shell to create the CDCZA nano system. The released Cur could notably decrease intracellular GSH content and thus improve the chemosensitivity of CDDP, resulting in severe cellular apoptosis. And the Au nanoparticles effectively enabled chemodynamic therapy enhancement by accelerating the depletion of β-D-glucose into H<sub>2</sub>O<sub>2</sub>. As a result, the CDCZA nanoparticles showed increased tumor accumulation and improved antitumor effectiveness in a model of EC. Taken together, this work provides a new idea for the clinical design of efficient treatment reagents for EC.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"19 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-024-04168-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-024-04168-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Cisplatin (CDDP) is the primary drug used in the initial treatment of esophageal cancer (EC). However, its side effects and resistance can limit its effectiveness in clinical therapy. Curcumin (Cur)-mediated glutathione (GSH) depletion can reverse resistance, enhance the chemosensitivity of CDDP, and further improve the efficacy of platinum-containing chemotherapy in the treatment of esophageal cancer. However, it is also faced with problems of poor water solubility and low bioavailability in vivo, which severely hinders cancer treatments. In order to address these issues, we developed a novel nanotherapeutic system called CDCZA, combining Cur/CDDP/Cu/ZIF8@Au to enhance chemotherapy through GSH depletion and chemodynamic therapy through self-produced H2O2. Cu and CDDP were precisely co-loaded into Cu/ZIF8 nanoparticles using a one-pot method, then ultra-small gold nanoparticles mimicking glucose oxidase (Au nanoparticles) were embedded in the outer shell to create the CDCZA nano system. The released Cur could notably decrease intracellular GSH content and thus improve the chemosensitivity of CDDP, resulting in severe cellular apoptosis. And the Au nanoparticles effectively enabled chemodynamic therapy enhancement by accelerating the depletion of β-D-glucose into H2O2. As a result, the CDCZA nanoparticles showed increased tumor accumulation and improved antitumor effectiveness in a model of EC. Taken together, this work provides a new idea for the clinical design of efficient treatment reagents for EC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
Glucose
阿拉丁
Methylene blue (MB)
阿拉丁
Sodium borohydride (NaBH4)
阿拉丁
Chloroauric acid (HAuCl4)
阿拉丁
2-methylimidazole
阿拉丁
Zinc nitrate hexahydrate
阿拉丁
Copper nitrate trihydrate
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters 工程技术-材料科学:综合
CiteScore
11.30
自引率
0.00%
发文量
110
审稿时长
48 days
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
期刊最新文献
Antimicrobial membranes based on polycaprolactone:pectin blends reinforced with zeolite faujasite for cloxacillin-controlled release Integration of silver nanostructures in wireless sensor networks for enhanced biochemical sensing Crystal growth, structural phase transitions and optical gap evolution of FAPb(Br1-xClx)3 hybrid perovskites (FA: formamidinium ion, CH(NH2)2+) Insights into semi-continuous synthesis of iron oxide nanoparticles (IONPs) via thermal decomposition of iron oleate Studies on the electrical and optical conductivity of barium-nickel ferrite nanoparticles doped with Zn
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1