{"title":"Examination on behavior of tip leakage flow in a three-stage gas-liquid two-phase flow pump","authors":"Si-na Yan, Xing-qi Luo, Jian-jun Feng, Shuai-hui Sun, Guo-jun Zhu, Xin Wu","doi":"10.1007/s42241-024-0063-1","DOIUrl":null,"url":null,"abstract":"<div><p>Tip leakage flow (TLF) trajectory in a pump with gas entrainment is investigated via visualization experiments and numerical simulations. Starting position of tip leakage vortex (TLV) is determined accurately by numerical simulation. Under high liquid flow rate (<i>Q</i><sub><i>l</i></sub>) and high inlet gas volume fraction (IGVF) conditions, TLF flows from suction surface to pressure surface near the leading edge of blade, and the direction of TLF gradually changes along the chord which flows from pressure surface to suction surface near the tailing edge. The angle between TLF and blade mean camberline increases progressively as either <i>Q</i><sub><i>l</i></sub> or IGVF decreases, and starting position of TLV moves towards leading edge direction. As <i>Q</i><sub><i>l</i></sub> or IGVF decreases, value of vorticity increases and high vorticity region moves towards leading edge. The entropy production rate at blade tip clearance is high, and entropy diffuses from pressure surface to suction surface due to jet flow in blade tip clearance. The greater the amount of accumulated gas there is, the greater the amount of entropy in the area. In addition, when gas is entrained in pump, there are many low frequency fluctuations generated in blade tip clearance.</p></div>","PeriodicalId":637,"journal":{"name":"Journal of Hydrodynamics","volume":"36 5","pages":"843 - 853"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s42241-024-0063-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Tip leakage flow (TLF) trajectory in a pump with gas entrainment is investigated via visualization experiments and numerical simulations. Starting position of tip leakage vortex (TLV) is determined accurately by numerical simulation. Under high liquid flow rate (Ql) and high inlet gas volume fraction (IGVF) conditions, TLF flows from suction surface to pressure surface near the leading edge of blade, and the direction of TLF gradually changes along the chord which flows from pressure surface to suction surface near the tailing edge. The angle between TLF and blade mean camberline increases progressively as either Ql or IGVF decreases, and starting position of TLV moves towards leading edge direction. As Ql or IGVF decreases, value of vorticity increases and high vorticity region moves towards leading edge. The entropy production rate at blade tip clearance is high, and entropy diffuses from pressure surface to suction surface due to jet flow in blade tip clearance. The greater the amount of accumulated gas there is, the greater the amount of entropy in the area. In addition, when gas is entrained in pump, there are many low frequency fluctuations generated in blade tip clearance.
期刊介绍:
Journal of Hydrodynamics is devoted to the publication of original theoretical, computational and experimental contributions to the all aspects of hydrodynamics. It covers advances in the naval architecture and ocean engineering, marine and ocean engineering, environmental engineering, water conservancy and hydropower engineering, energy exploration, chemical engineering, biological and biomedical engineering etc.