{"title":"Ultrahigh-field animal MRI system with advanced technological update","authors":"Yaohui Wang, Guyue Zhou, Haoran Chen, Pengfei Wu, Wenhui Yang, Feng Liu, Qiuliang Wang","doi":"10.1038/s44303-024-00060-0","DOIUrl":null,"url":null,"abstract":"Animal magnetic resonance imaging (MRI) systems typically deliver superior imaging performance over conventional human MRI systems, making them a prevailing instrument in preclinical research. It is challenging to achieve the high performance of these animal MRI systems, due to the multifaceted nature of the various system components and the complexity of integration debugging. This work described the design, fabrication, measurement and integration of a 7 T animal MRI system, which exhibits several performance highlights. Both the magnet and gradient assembly adopted an ultra-shielding strategy, facilitating ease of system installation, maintenance and debugging. The main magnetic field exhibits acceptable homogeneity and stability, and the gradient coil is mechanically reliable thanks to zero-force control. The animal MRI system underwent debugging using proprietary imaging software to generate images of phantoms, fruits and organisms. Further research investigation will be performed to promote more scientific outputs with enhanced functional capabilities.","PeriodicalId":501709,"journal":{"name":"npj Imaging","volume":" ","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44303-024-00060-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Imaging","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44303-024-00060-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Animal magnetic resonance imaging (MRI) systems typically deliver superior imaging performance over conventional human MRI systems, making them a prevailing instrument in preclinical research. It is challenging to achieve the high performance of these animal MRI systems, due to the multifaceted nature of the various system components and the complexity of integration debugging. This work described the design, fabrication, measurement and integration of a 7 T animal MRI system, which exhibits several performance highlights. Both the magnet and gradient assembly adopted an ultra-shielding strategy, facilitating ease of system installation, maintenance and debugging. The main magnetic field exhibits acceptable homogeneity and stability, and the gradient coil is mechanically reliable thanks to zero-force control. The animal MRI system underwent debugging using proprietary imaging software to generate images of phantoms, fruits and organisms. Further research investigation will be performed to promote more scientific outputs with enhanced functional capabilities.