Leyi Loh, Junyong Wang, Magdalena Grzeszczyk, Maciej Koperski, Goki Eda
{"title":"Towards quantum light-emitting devices based on van der Waals materials","authors":"Leyi Loh, Junyong Wang, Magdalena Grzeszczyk, Maciej Koperski, Goki Eda","doi":"10.1038/s44287-024-00108-8","DOIUrl":null,"url":null,"abstract":"Van der Waals (vdW) materials have emerged as a promising platform for the generation of single-photon emitters, attracting considerable interest in the past several years. This diverse material class presents intriguing prospects for quantum technologies owing to their facile integration and highly tunable properties. The development of quantum light-emitting devices (QLEDs) — optoelectronic components capable of electrically triggering single-photon emission on demand — represents a crucial step towards practical implementation. Reports on such devices, however, remain sparse despite the rapid advancements in the generation and characterization of single-photon emitters in recent years. In this Perspective, we provide an overview of the current landscape in QLED development, comparing the attributes of vdW materials with those of their predecessors, such as quantum dots and diamond. We discuss device architectures and design principles for spatially and energetically targeted electrical excitation of quantum emitters. Lastly, we highlight the prevailing challenges and distinctive opportunities that vdW materials present for the development of quantum light sources, shedding light on the path to continued innovation in device architectures within the field. Quantum light-emitting devices (QLEDs) are essential for scalable on-chip quantum technologies. This Perspective analyses electrical pumping and quantum confinement schemes enabled by van der Waals materials and explores how they can be harnessed for the advancement of QLED development.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":"1 12","pages":"815-829"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44287-024-00108-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Van der Waals (vdW) materials have emerged as a promising platform for the generation of single-photon emitters, attracting considerable interest in the past several years. This diverse material class presents intriguing prospects for quantum technologies owing to their facile integration and highly tunable properties. The development of quantum light-emitting devices (QLEDs) — optoelectronic components capable of electrically triggering single-photon emission on demand — represents a crucial step towards practical implementation. Reports on such devices, however, remain sparse despite the rapid advancements in the generation and characterization of single-photon emitters in recent years. In this Perspective, we provide an overview of the current landscape in QLED development, comparing the attributes of vdW materials with those of their predecessors, such as quantum dots and diamond. We discuss device architectures and design principles for spatially and energetically targeted electrical excitation of quantum emitters. Lastly, we highlight the prevailing challenges and distinctive opportunities that vdW materials present for the development of quantum light sources, shedding light on the path to continued innovation in device architectures within the field. Quantum light-emitting devices (QLEDs) are essential for scalable on-chip quantum technologies. This Perspective analyses electrical pumping and quantum confinement schemes enabled by van der Waals materials and explores how they can be harnessed for the advancement of QLED development.