Automated analysis of ultrastructure through large-scale hyperspectral electron microscopy

B. H. Peter Duinkerken, Ahmad M. J. Alsahaf, Jacob P. Hoogenboom, Ben N. G. Giepmans
{"title":"Automated analysis of ultrastructure through large-scale hyperspectral electron microscopy","authors":"B. H. Peter Duinkerken, Ahmad M. J. Alsahaf, Jacob P. Hoogenboom, Ben N. G. Giepmans","doi":"10.1038/s44303-024-00059-7","DOIUrl":null,"url":null,"abstract":"Microscopy is a key technique to visualize and understand biology. Electron microscopy (EM) facilitates the investigation of cellular ultrastructure at biomolecular resolution. Cellular EM was recently revolutionized by automation and digitalisation allowing routine capture of large areas and volumes at nanoscale resolution. Analysis, however, is hampered by the greyscale nature of electron images and their large data volume, often requiring laborious manual annotation. Here we demonstrate unsupervised and automated extraction of biomolecular assemblies in conventionally processed tissues using large-scale hyperspectral energy-dispersive X-ray (EDX) imaging. First, we discriminated biological features in the context of tissue based on selected elemental maps. Next, we designed a data-driven workflow based on dimensionality reduction and spectral mixture analysis, allowing the visualization and isolation of subcellular features with minimal manual intervention. Broad implementations of the presented methodology will accelerate the understanding of biological ultrastructure.","PeriodicalId":501709,"journal":{"name":"npj Imaging","volume":" ","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44303-024-00059-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Imaging","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44303-024-00059-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Microscopy is a key technique to visualize and understand biology. Electron microscopy (EM) facilitates the investigation of cellular ultrastructure at biomolecular resolution. Cellular EM was recently revolutionized by automation and digitalisation allowing routine capture of large areas and volumes at nanoscale resolution. Analysis, however, is hampered by the greyscale nature of electron images and their large data volume, often requiring laborious manual annotation. Here we demonstrate unsupervised and automated extraction of biomolecular assemblies in conventionally processed tissues using large-scale hyperspectral energy-dispersive X-ray (EDX) imaging. First, we discriminated biological features in the context of tissue based on selected elemental maps. Next, we designed a data-driven workflow based on dimensionality reduction and spectral mixture analysis, allowing the visualization and isolation of subcellular features with minimal manual intervention. Broad implementations of the presented methodology will accelerate the understanding of biological ultrastructure.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过大规模高光谱电子显微镜自动分析超微结构
显微镜是可视化和理解生物学的关键技术。电子显微镜(EM)有助于在生物分子分辨率上研究细胞超微结构。蜂窝EM最近发生了革命性的变化,自动化和数字化使其能够以纳米级分辨率进行大面积和体积的常规捕获。然而,电子图像的灰度特性和它们的大数据量阻碍了分析,通常需要费力的手工注释。在这里,我们展示了使用大规模高光谱能量色散x射线(EDX)成像对常规处理组织中的生物分子组装进行无监督和自动提取。首先,我们根据选定的元素图来区分组织背景下的生物特征。接下来,我们设计了一个基于降维和光谱混合分析的数据驱动工作流程,允许在最小的人工干预下可视化和分离亚细胞特征。所提出的方法的广泛实施将加速对生物超微结构的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Molecular imaging of viral pathogenesis and opportunities for the future. Approaching maximum resolution in structured illumination microscopy via accurate noise modeling. Stratifying vascular disease patients into homogeneous subgroups using machine learning and FLAIR MRI biomarkers Metabolic nanoscopy enhanced by experimental and computational approaches Ultrahigh-field animal MRI system with advanced technological update
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1