{"title":"Advancing cellular transfer printing: achieving bioadhesion-free deposition <i>via</i> vibration microstreaming.","authors":"Ziyu Huang, Yinning Zhou, Yu Liu, Yue Quan, Qiu Yin, Yucheng Luo, Yimeng Su, Bingpu Zhou, Wenming Zhang, Benpeng Zhu, Zhichao Ma","doi":"10.1039/d4lc00601a","DOIUrl":null,"url":null,"abstract":"<p><p>Cell transfer printing plays an essential role in biomedical research and clinical diagnostics. Traditional bioadhesion-based methods often necessitate complex surface modifications and offer limited control over the quantity of transferred cells. There is a critical need for a modification-free, non-labeling, and high-throughput cell transfer printing technique. In this study, an adhesion-free cellular transfer printing method based on vibration-induced microstreaming is introduced. By adjusting the volume of the microcavity, the number of cells transferred per microtiter well can be realized to the level of a single cell. Additionally, it allows for precise control of large-scale cellular spatial distribution, leading to the formation of biomimetic patterns. Moreover, the demonstrated biocompatibility and high throughput of this cell transfer printing method highlight its potential utility. The correspondence of the transferred cell amount to the vibration and frequencies allows the system to exhibit excellent tunability of the transferred cell amount and pattern. This bioadhesion-free cell transfer printing method holds promise for advancing cell manipulation in biomedical research and analysis.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4lc00601a","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Cell transfer printing plays an essential role in biomedical research and clinical diagnostics. Traditional bioadhesion-based methods often necessitate complex surface modifications and offer limited control over the quantity of transferred cells. There is a critical need for a modification-free, non-labeling, and high-throughput cell transfer printing technique. In this study, an adhesion-free cellular transfer printing method based on vibration-induced microstreaming is introduced. By adjusting the volume of the microcavity, the number of cells transferred per microtiter well can be realized to the level of a single cell. Additionally, it allows for precise control of large-scale cellular spatial distribution, leading to the formation of biomimetic patterns. Moreover, the demonstrated biocompatibility and high throughput of this cell transfer printing method highlight its potential utility. The correspondence of the transferred cell amount to the vibration and frequencies allows the system to exhibit excellent tunability of the transferred cell amount and pattern. This bioadhesion-free cell transfer printing method holds promise for advancing cell manipulation in biomedical research and analysis.
期刊介绍:
Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.