Xiaokai Fan, Le Xin, Xuan Yu, Maoxuan Liu, Joong Sup Shim, Gui Yang, Liang Chen
{"title":"Identify critical genes of breast cancer and corresponding leading natural product compounds of potential therapeutic targets.","authors":"Xiaokai Fan, Le Xin, Xuan Yu, Maoxuan Liu, Joong Sup Shim, Gui Yang, Liang Chen","doi":"10.1007/s11030-024-11035-z","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer is a leading cause of cancer mortality among women globally, with over 2.26 million new cases annually, according to GLOBOCAN 2020. This accounts for approximately 25% of all new female cancers and 15.5% of female cancer deaths. To address this critical public health challenge, we conducted a multi-omics study aimed at identifying hub genes, therapeutic targets, and potential natural product-based therapies. We employed weighted gene co-expression network analysis (WGCNA) and differential gene expression analysis to pinpoint hub genes in breast cancer. Regulatory networks for these genes were constructed by re-analyzing chromatin immunoprecipitation sequencing (ChIP-seq) data from breast cancer cell lines. Additionally, single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) were utilized to characterize hub gene expression profiles and their relationships with immune cell clusters and tumor microenvironments. Survival analysis based on mRNA and protein expression levels identified prognostic factors and potential therapeutic targets. Lastly, large-scale virtual screening of natural product compounds revealed leading compounds that target squalene epoxidase (SQLE). Our multi-omics analysis paves the way for more effective clinical treatments for breast cancer.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-11035-z","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer is a leading cause of cancer mortality among women globally, with over 2.26 million new cases annually, according to GLOBOCAN 2020. This accounts for approximately 25% of all new female cancers and 15.5% of female cancer deaths. To address this critical public health challenge, we conducted a multi-omics study aimed at identifying hub genes, therapeutic targets, and potential natural product-based therapies. We employed weighted gene co-expression network analysis (WGCNA) and differential gene expression analysis to pinpoint hub genes in breast cancer. Regulatory networks for these genes were constructed by re-analyzing chromatin immunoprecipitation sequencing (ChIP-seq) data from breast cancer cell lines. Additionally, single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) were utilized to characterize hub gene expression profiles and their relationships with immune cell clusters and tumor microenvironments. Survival analysis based on mRNA and protein expression levels identified prognostic factors and potential therapeutic targets. Lastly, large-scale virtual screening of natural product compounds revealed leading compounds that target squalene epoxidase (SQLE). Our multi-omics analysis paves the way for more effective clinical treatments for breast cancer.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;